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Abstract
We propose and analyze a structure-preserving parametric finite element method (SP-
PFEM) for the evolution of closed curves under anisotropic surface diffusion with surface
energy density γ̂ (θ). Our primary theoretical contribution establishes that the condition
3γ̂ (θ) − γ̂ (θ − π) ≥ 0 is both necessary and sufficient for unconditional energy stability
within the framework of local energy estimates. The proposed method introduces a symmet-
ric surface energy matrix Ẑk(θ) with a stabilizing function k(θ), leading to a conservative
weak formulation. Its fully discretization via SP-PFEM rigorously preserves the two geomet-
ric structures: enclosed area conservation and energy dissipation unconditionally under our
energy stability condition. Numerical results are reported to demonstrate the efficiency and
accuracy of the proposed method, along with its area conservation and energy dissipation
properties.

Keywords Geometric flows · Parametric finite element method · Anisotropic surface
energy · Structure-preserving · Optimal condition

Mathematics Subject Classification 65M60 · 65M12 · 35K55 · 53C44

1 Introduction

Background Anisotropic surface diffusion is a fundamental kinetic process in materials
science, characterized by the spatially anisotropic mass transport of atoms, molecules and
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Fig. 1 An illustration of a closed
curve under anisotropic surface
diffusion with surface energy
γ̂ (θ), while θ is the angle
between the y-axis and the unit
outward normal vector
n = n(θ):=(− sin θ, cos θ)T .
τ = τ (θ):=(cos θ, sin θ)T

represents the unit tangent vector

atomic clusters along solid material surfaces, where the directional dependence is governed
by the underlying lattice structure [45]. This phenomenon has garnered increasing attention
in various fields of surface/materials science, such as heterogeneous catalysis [47], epitaxial
growth of thin films [24, 29], and crystal growth of nanomaterials [26, 27]. Furthermore,
the anisotropic surface diffusion finds numerous applications in fields such as computational
geometry and solid-state physics, spanning areas like image processing [17], quantum dot
manufacturing [24] and solid-state dewetting [33, 35–37, 50, 54, 55, 58].

Let �:=�(t) ⊂ R
2 be an evolving closed two-dimensional (2D) curve parameterized by

X = X(s, t):=(x(s, t), y(s, t))T , where s represents the arc-length parameter and t denotes
time. We denote the unit outward normal vector by n = n(θ):=(− sin θ, cos θ)T and the
corresponding unit tangent vector by τ = τ (θ):=(cos θ, sin θ)T , where θ ∈ 2πT:=R/2πZ
represents the angle between the vertical axis and n, see Fig. 1. To characterize the direction-
dependent effect, an anisotropic surface energy density γ̂ (θ) > 0 is introduced. Subsequently,
the total free energy of � is defined as:

Wc(�):=
∫

�

γ̂ (θ) ds. (1.1)

Following [9, 52], the evolution of � under anisotropic surface diffusion is derived as the
H−1-gradient flow of Wc (1.1), which is formulated as:

∂tX = (∂ssμ)n, (1.2)

where μ is the weighted curvature. More precisely, μ is defined by the functional derivative
of Wc(�) with respect to � as

μ:=δWc(�)

δ�
= lim

ε→0

Wc(�
ε) − Wc(�)

ε
,

with �ε representing a small perturbation of �. Based on the γ̂ (θ) formulation, the weighted
curvature μ also admits an explicit representation [37] in terms of the anisotropic surface
energy density γ̂ (θ) as:

μ = [
γ̂ (θ) + γ̂ ′′(θ)

]
κ, (1.3)

here κ:= − (∂ssX) · n denoting the curvature. In case of no directional dependence, i.e.,
γ̂ (θ) ≡ 1, the weighted curvature μ reduces to κ , and equation (1.2) goes to the (isotropic)
surface diffusion.

The evolution equation (1.2) of the anisotropic surface diffusion, being a fourth-order
geometric flow, has two fundamental geometric properties: (i) the conservationof the enclosed
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area Ac(t) by �(t), and (ii) the dissipation of the total free energy Wc(t). It is desirable to
develop a numerical method that can preserve these geometric properties.

Different methods have been conducted on the numerical approximations of isotropic/ani-
sotropic curvature flows over the past several decades. For example, the marker particle
method [20, 44, 56], the discontinuous Galerkin method [57], the θ − L formulation method
[30–32], the phase-field method [19, 25, 33, 51], the evolving surface element methods
[21, 22, 28, 38] and the parametric finite element method (PFEM) [1, 6, 11, 12, 14–16,
35, 39]. Among these approaches, the PFEM presents significant theoretical advantages
from the structure-preserving perspective. The energy-stable PFEM (ES-PFEM) proposed
by Barret, Garcke, and Nürnberg [12, 14, 15], also termed the BGN method, established the
first rigorous proof for preserving energy stability in isotropic surface diffusion. Subsequently,
Bao and Zhao built upon this work to propose a structure-preserving PFEM (SP-PFEM) that
simultaneously maintains energy stability and area conservation at the fully discrete level [2,
3, 11].

The extension of these structure-preserving PFEMs to anisotropic surface energies orig-
inated with a series of works by Barrett, Garcke, and Nürnberg [13, 15], where they
successfully adapted the energy stability to cases with a specific Riemannian-like metric
form of surface energy. In [39], Bao and Li constructed a surface energy matrix G(θ), which
extended the ES-PFEM from the specific forms to amuch broader class of anisotropic surface
energies. However, the energy stability conditions are relatively complex and restrictive.

A significant advancement in the extension of the SP-PFEM to anisotropic surface ener-
gies is adding a stabilizing functions k(θ) in the surface energy matrix. Building upon this
advancement, Bao and Li [8] established an analytical framework, demonstrating that energy
stability follows from the satisfaction of a local energy estimates, where the stabilizing func-
tion k(θ) is required to greater than a bounded minimal stabilizing function k0(θ). In fact,
the energy stability proofs in all existing structure-preserving/energy-stable PFEMs [9, 10,
39, 42, 60] can be recast within this framework. Consequently, the different energy stability
conditions on the surface energy γ̂ emerge from the choice of surface energy matrix and the
analytical techniques employed in establishing these local energy estimates. For instance,
in the symmetrized SP-PFEM [4, 7], the author introduced a symmetrized surface energy
Zk , and proved the stability condition γ̂ (θ) = γ̂ (θ − π) through an application of Cauchy’s
inequality. The minimal stabilizing functions k0(θ) are estimated for several γ̂ (θ). Subse-
quently, by introducing another surface energy matrix Gk , the works in [8–10, 42] achieved
an improved stability condition 3γ̂ (θ)− γ̂ (θ −π) > 0 via refined analytical techniques. Very
recently, the energy stability condition is improved to 3γ̂ (θ)− γ̂ (θ −π) ≥ 0 and γ̂ ′(θ∗) = 0
when 3γ̂ (θ∗) − γ̂ (θ∗ − π) = 0 [60], yet the explicit characterization of k0(θ) remained
unknown.

On the other hand, the analysis in [9] initially established for the surface energy matrix
Gk that

3γ̂ (θ) − γ̂ (θ − π) ≥ 0, ∀θ ∈ 2πT (1.4)

serves as a necessary condition for the local energy estimate. Inspired by their proof, our
Remark 4.2 demonstrates that this condition is further independent of the specific construction
of surface energymatricesGk or Zk . Therefore, the energy stability condition in [60] is almost
optimal except for the extra condition γ̂ ′(θ∗) = 0. This naturally raises three fundamental
questions: (1) whether this necessary condition is also sufficient for energy stability, (2) if so,
which surface energy matrix, coupled with appropriate analytical techniques, would achieve
this optimal energy stability condition, and (3) how to explicitly characterize the minimal
stabilizing function k0(θ).
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Main results In this paper, we propose and analyze a structure-preserving PFEM for sim-
ulating anisotropic surface diffusion in two dimensions. The proposed SP-PFEM preserves
the area conservation and achieves unconditional energy stability under the energy stability
condition (1.4), without any additional constraints necessary. This establishes the sufficiency
of the necessary condition (1.4), thereby showing its optimality within the framework of local
energy estimates.
Structure of the paper In Section 2, we propose a conservative form and derive a weak for-
mulation for anisotropic surface diffusion by introducing a symmetric surface energy matrix
Ẑk(θ). In Section 3, a full discretization by a PFEM is presented for the weak formulation.
Meanwhile, we state the structure-preserving property of the method. In Section 4, a minimal
stabilizing function k0(θ) is defined. Assuming its existence, we establish the local energy
estimate, thereby proving the energy stability of the proposed PFEM. Section 5 provides a
detailed proof for existence of k0(θ). Furthermore, we formulate a sharp estimate lemma
and derive a global upper bound for k0(θ). Section 6 contains numerous numerical results
to validate the accuracy, efficiency, and the structure-preserving property of the proposed
PFEM. Finally, we summarize some conclusions in Section 7.

2 Conservative form andweak formulation

2.1 Conservative form

In order to derive a weak formulation for the anisotropic surface diffusion (1.2)–(1.3), the
following surface energy matrix is introduced:

Definition 2.1 (symmetric surface energy matrix) The symmetric surface energy matrix
Ẑk(θ) is given as

Ẑk(θ):=
(

γ̂ (θ) − γ̂ ′(θ) sin 2θ γ̂ ′(θ) cos 2θ

γ̂ ′(θ) cos 2θ γ̂ (θ) + γ̂ ′(θ) sin 2θ

)

+ k(θ)

(
sin2 θ − cos θ sin θ

− cos θ sin θ cos2 θ

)
, ∀θ ∈ 2πT.

(2.1)

Here, k : 2πT → R≥0 is a non-negative stabilizing function that can be prespecified.

Theorem 2.1 With the surface energy matrix (2.1), the following geometric identity holds:

μn + ∂s

(
Ẑk(θ)∂sX

)
= 0. (2.2)

Proof First, recall Fig. 1 that n = (− sin θ, cos θ)T and τ :=∂sX = (cos θ, sin θ)T .
Similar to derivations in [60, Theorem 2.1] or [39, (2.10)], we have

μn = −∂s

(
γ̂ (θ)∂sX + γ̂ ′(θ)n

)
. (2.3)

Note that nT ∂sX = n · τ ≡ 0, thus ∂s
(
k(θ)nnT ∂sX

)
vanishes. Thus, (2.3) can be reformu-

lated as

μn = −∂s

(
γ̂ (θ)∂sX + γ̂ ′(θ)n + k(θ)nnT ∂sX

)
. (2.4)
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On the other hand, denote

Lθ :=
(− sin 2θ cos 2θ

cos 2θ sin 2θ

)
, (2.5)

and acts it on the tangent vector ∂sX = τ ,

Lθ ∂sX =
(− sin 2θ cos 2θ

cos 2θ sin 2θ

) (
cos θ

sin θ

)
=

(− sin θ

cos θ

)
= n. (2.6)

Therefore,

Ẑk(θ)∂sX =
(
γ̂ (θ)I2 + γ̂ ′(θ)Lθ + k(θ)nnT

)
∂sX

= γ̂ (θ)∂sX + γ̂ ′(θ)n + k(θ)nnT ∂sX,

(2.7)

which leads to the desired equation (2.2) by substituting (2.7) into (2.4). 
�
With the help of the geometric identity (2.2), the anisotropic surface diffusion equation

(1.2)–(1.3) can be rewritten into a conservative form:

∂tX · n − ∂ssμ = 0, 0 < s < L(t), ∀t ≥ 0, (2.8a)

μn + ∂s

(
Ẑk(θ)∂sX

)
= 0, (2.8b)

where L(t):= ∫
�(t) 1 ds represents the length of �(t).

2.2 Weak formulation

Let I:=[0, 1] be the unit interval, and the evolving curve �(t) is parameterized as

�(t):=X(ρ, t) = (x(ρ, t), y(ρ, t))T : I × R
+ → R

2, (2.9)

with a time-independent variable ρ ∈ I. Then the arclength parameter s can be given as
s(ρ, t) = ∫ ρ

0 |∂ρX(q, t)| dq satisfying ∂ρs = |∂ρX|. (We will not discriminate X(ρ, t) and
X(s, t) for representing �(t) if there’s no misunderstanding.)

Introducing the following functional space

L2(I):=
{
u : I → R |

∫
�(t)

|u(s)|2 ds =
∫
I

|u(s(ρ, t))|2∂ρs dρ < +∞
}

, (2.10)

equipped with the L2-inner product
(
u, v

)
�(t)

:=
∫

�(t)
u(s)v(s) ds =

∫
I

u(s(ρ, t))v(s(ρ, t))∂ρs dρ, (2.11)

for any scalar or vector valued functions. And the Sobolev spaces are defined as

H1(I):= {
u : I → R | u ∈ L2(I), and ∂ρu ∈ L2(I)

}
, (2.12a)

H1
p(I):=

{
u ∈ H1(I) | u(0) = u(1)

}
. (2.12b)

Extensions of above definitions to the vector-valued functions in [L2(I)]2, [H1(I)]2 and
[H1

p(I)]2 are straightforward.

123



   76 Page 6 of 22 Journal of Scientific Computing           (2025) 104:76 

Multiplying a test function ϕ ∈ H1
p(I) to (2.8a), then integrating over �(t) and taking

integration by parts, we obtain
(
n · ∂tX, ϕ

)
�(t)

+
(
∂sμ, ∂sϕ

)
�(t)

= 0. (2.13)

Similarly, by taking an inner product with a test function ω = (ω1, ω2)
T ∈ [H1

p(I)]2 to
(2.8b) and integrating by parts, we deduce

0 =
(
μn + ∂s

(
Ẑk(θ)∂sX

)
,ω

)
�(t)

=
(
μn,ω

)
�(t)

−
(
Ẑk(θ)∂sX, ∂sω

)
�(t)

.

Combining (2.13) and (2.14), a weak formulation for anisotropic surface diffusion (1.2)–
(1.3) with an initial condition X(s, 0) = X0(s) = (x0(s), y0(s))T reads: given an initial
closed curve �(0) = X(·, 0) = X0 ∈ [H1

p(I)]2, find the solution (X(·, t), μ(·, t)) ∈
[H1

p(I)]2 × H1
p(I) satisfying(

n · ∂tX, ϕ
)

�(t)
+

(
∂sμ, ∂sϕ

)
�(t)

= 0, ∀ϕ ∈ H1
p(I), (2.14a)

(
μn,ω

)
�(t)

−
(
Ẑk(θ)∂sX, ∂sω

)
�(t)

= 0, ∀ω ∈ [H1
p(I)]2. (2.14b)

Remark 2.1 The surface energy matrix Ẑk(θ) can be transformed into Zk(n) in [4], by the
one-to-one correspondence n:=n(θ) = (− sin θ, cos θ)T .

2.3 Area conservation and energy dissipation

Suppose the solution of the weak formulation (2.14) be (X(·, t), μ(·, t)), and the evolving
curve�(t) is given by�(t) = X(·, t) = (x(·, t), y(·, t))T . Let Ac(t) be the area of the region
enclosed by �(t) andWc(t) be the total free energy, respectively, which are formally defined
as

Ac(t):=
∫

�(t)
y(s, t)∂s x(s, t) ds, Wc(t) =

∫
�(t)

γ̂ (θ) ds. (2.15)

The solution of (2.14) satisfies the following structure-preserving properties:

Proposition 2.1 (area conservation and energy dissipation) The area Ac(t) of the solution
(X(·, t), μ(·, t)) ∈ [H1

p(I)]2 × H1
p(I) given by (2.14) is conserved, and the total free energy

Wc(t) is dissipative, i.e.

Ac(t) ≡ Ac(0), Wc(t) ≤ Wc(t1) ≤ Wc(0), ∀t ≥ t1 ≥ 0. (2.16)

The proof for Proposition 2.1 is similar to [60, Proposition 3.1]. Details are omitted.

3 A structure-preserving PFEM discretization

Consider a positive integer N > 2 and let h = 1/N be the mesh size. We partition the unit
interval as I = [0, 1]:= ∪N

j=1 I j with sub-intervals I j :=[ρ j−1, ρ j ] and grid points ρ j = jh
for j = 1, 2, . . . , N .
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Let us introduce the finite element subspaces of H1(I) as:

K
h :=

{
uh ∈ C(I) | uh |I j ∈ P1(I j ),∀1 ≤ j ≤ N

}
⊆ H1(I), (3.1a)

K
h
p:=

{
uh ∈ K

h | uh(0) = uh(1)
}

, (3.1b)

where P1(I j ) stands for the space of polynomials defined on I j with degree ≤ 1.
Let τ be the uniform time step, and the approximation of�(t) = X(·, t) at themth discrete

time level tm = mτ be �m = Xm(·) = (xm(·), ym(·))T ∈ [Kh
p]2, m = 0, 1, 2, . . . . Suppose

the polygonal curve �m is composed by ordered line segments {hmj }Nj=1, i.e.

�m =
N⋃
j=1

hmj , with hmj = (hmj,x , h
m
j,y)

T :=Xm(ρ j ) − Xm(ρ j−1) (3.2)

for j = 1, 2, . . . , N . The unit tangential vector τm , the outward unit normal vector nm and
the inclination angle θm are constant on each interval I j , which can be computed as

τm |I j = hmj
|hmj | :=τm

j , nm |I j = −(τm
j )⊥ = − (hmj )⊥

|hmj | :=nmj , (3.3)

and

θm |I j :=θmj , satisfying cos θmj = hmj,x
|hmj | , sin θmj = hmj,y

|hmj | . (3.4)

The mass-lumped inner product (·, ·)h�m and discretized differential operator ∂s on �m for
scalar-/vector-valued functions are defined as

(
f , g

)h
�m

:=
N∑
j=1

|hmj |
2

(
f (ρ−

j )g(ρ−
j ) + f (ρ+

j−1)g(ρ
+
j−1)

)
, (3.5a)

∂s f |I j :=
f (ρ j ) − f (ρ j−1)

|hmj | , ∀1 ≤ j ≤ N , (3.5b)

where f (ρ±
j ):= lim

ρ→ρ±
j

f (ρ).

Following ideas in [3, 34] to design a volume-preserving scheme for the surface diffusion,
by adopting the explicit-implicit Euler method for time discretization, a structure-preserving
PFEM for the anisotropic surface diffusion (1.2) is given as: for a given initial curve �0 =
X0(·) ∈ [Kh

p]2, find the solution
(
Xm+1(·), μm+1(·)) ∈ [Kh

p]2 × K
h
p, m = 0, 1, 2, . . .

satisfying

(
nm+ 1

2 · X
m+1 − Xm

τ
, ϕh

)h
�m

+
(
∂sμ

m+1, ∂sϕ
h
)h

�m
= 0, ∀ϕh ∈ K

h
p, (3.6a)

(
μm+1nm+ 1

2 ,ωh
)h

�m
−

(
Ẑk(θ

m)∂sXm+1, ∂sω
h
)h

�m
= 0, ∀ωh ∈ [Kh

p]2, (3.6b)

where

nm+ 1
2 = −1

2

(
∂sXm + ∂sXm+1)⊥ = − 1

2|∂ρXm |
(
∂ρXm + ∂ρXm+1)⊥

. (3.7)

Remark 3.1 The fully implicit scheme is solved numerically by the Newton’s method. The

choice of nm+ 1
2 is essential for the area conservation at the discrete level, see [11].
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3.1 Structure-preserving property of the SP-PFEM

Denote Am
c the area of the region enclosed by polygonal curve �m and Wm

c the total free
energy, respectively, which are formally defined as

Am
c :=1

2

N∑
j=1

(xmj − xmj−1)(y
m
j + ymj−1), (3.8a)

Wm
c :=

N∑
j=1

γ̂ (θmj )|hmj |, (3.8b)

where xmj :=xm(ρ j ), ymj :=ym(ρ j ), j = 0, 1, 2, . . . , N .

Theorem 3.1 (area conservation and unconditional energy stability) Suppose γ̂ (θ) ∈
C2(2πT) and satisfies the optimal energy stability condition (1.4). The SP-PFEM (3.6)
is area conservative and unconditional energy dissipative with sufficiently large k(θ), i.e.

Am+1
c = Am

c = · · · = A0
c , Wm+1

c ≤ Wm
c ≤ · · · ≤ W 0

c , ∀m ≥ 0. (3.9)

For the proof of area conservation, we refer the reader to [11, Theorem 2.1] by Bao
and Zhao for surface diffusion. Detailed proof of energy dissipation will appear in the next
section.

Remark 3.2 With the adoption of γ (n), SP-PFEM (3.6) can be transformed to the sym-
metrized SP-PFEM in [4]. It is a significant improvement compared to the original energy
stability condition γ (n) = γ (−n) or γ̂ (θ) = γ̂ (θ − π) in [4]. Our analysis within the γ̂ (θ)

formulation indicates that, the symmetry condition γ̂ (θ) = γ̂ (θ − π) of the symmetrized
SP-PFEM could be improved to optimal condition (1.4), without any extra condition.

4 Local energy estimate and the unconditional energy stability

4.1 Theminimal stabilizing function

Introduce the following auxiliary functions,

Pα(φ, θ):=γ̂ (θ) − γ̂ ′(θ) sin 2φ + α sin2 φ, (4.1a)

Q(φ, θ):=γ̂ (θ − φ) + γ̂ (θ) cosφ − γ̂ ′(θ) sin φ. (4.1b)

Thus, the minimal stabilizing function is defined by adopting the auxiliary functions
Pα, Q:

k0(θ):= inf
{
α ≥ 0 | 4γ̂ (θ)Pα(φ, θ) ≥ Q2(φ, θ), ∀φ ∈ 2πT

}
. (4.2)

The following theorem ensures the existence of k0(θ) and provides an upper bound that
offers practical guidance for applications:

Theorem 4.1 For γ̂ (θ) satisfying (1.4), the minimal stabilizing function k0(θ), as given in
(4.2), is well-defined. Furthermore, we have the following estimate:

k0(θ) ≤ 1

4γ̂ (θ)

[
A2(θ) + 4γ̂ (θ)A(θ) + 4|γ̂ ′(θ)|2] < ∞, (4.3)
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where

A(θ):=π2

8

(
5 sup
2πT

|γ̂ ′′| + 5|γ̂ ′(θ)| + γ̂ (θ)

)
. (4.4)

Detailed proof of Theorem 4.1 will be given in Section 5.

Remark 4.1 In previous studies, the existence of k0(θ) was established through the open
cover theorem [8, 9, 60], hence a global estimate was lacking. This results that, in the numer-
ical computation, one usually has to solve an optimization problem to obtain k0(θ) first.
Theorem 4.1 provides a global estimate for k0(θ) and eliminates the need to first compute an
approximate value of k0(θ) in the practical applications.

4.2 Local energy estimate

Theorem 4.2 (local energy estimate) For any p, q ∈ R
2\{0}, let p = | p|(cosϕ, sin ϕ)T , q =

|q|(cos θ, sin θ)T , then for sufficiently large k(θ),

1

|q|
(
Ẑk(θ) p

)
· ( p − q) ≥ γ̂ (ϕ)| p| − γ̂ (θ)|q|. (4.5)

Proof By the definition of Ẑk(θ) in (2.1), we have

1

|q|
(
Ẑk(θ) p

)
· p = | p|2

|q| Ẑk(θ)

(
cosϕ

sin ϕ

)
·
(
cosϕ

sin ϕ

)

= | p|2
|q|

(
γ̂ (θ) − γ̂ ′(θ) sin 2(θ − ϕ) + k(θ) sin2(θ − ϕ)

)

= | p|2
|q| Pk(θ − ϕ, θ).

(4.6)

1

|q|
(
Ẑk(θ) p

)
· q = | p|Ẑk(θ)

(
cosϕ

sin ϕ

)
·
(
cos θ

sin θ

)

= | p| (γ̂ (θ) cos(θ − ϕ) − γ̂ ′(θ) sin(θ − ϕ)
)

= | p| (Q(θ − ϕ, θ) − γ̂ (ϕ)
)
.

(4.7)

By Theorem 4.1, for sufficiently large k(θ) ≥ k0(θ), 4γ̂ (θ)Pk(θ − ϕ, θ) ≥ Q2(θ − ϕ, θ).
Therefore,

1

|q|
(
Ẑk(θ) p

)
· ( p − q) ≥ | p|2

4γ̂ (θ)|q|Q
2(θ − ϕ, θ) − | p|Q(θ − ϕ, θ) + | p|γ̂ (ϕ)

≥ | p|γ̂ (ϕ) − |q|γ̂ (θ).

(4.8)

The last inequality comes from the fact 1
4a t

2 − t ≥ −a, ∀t ∈ R,∀a ∈ R
+. 
�

Remark 4.2 By taking p = −q in (4.5), i.e. θ = ϕ+π, | p| = |q|. Then local energy estimate
(4.5) gives 2γ̂ (θ) ≥ γ̂ (θ −π)− γ̂ (θ). This is consistent with condition (1.4). This result can

be extended to any surface energymatrix Ẑ(θ) satisfying
(
cos θ sin θ

)
Ẑ(θ)

(
cos θ

sin θ

)
= γ̂ (θ).

Therefore, within the framework of using local energy estimate, the energy stability condition
(1.4) is considered optimal and cannot be further improved.
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4.3 Unconditional energy stability

Proof Suppose k(θ) is sufficiently large, satisfying k(θ) ≥ k0(θ).
For any m ≥ 0, we have

(
Ẑk(θ

m)∂sXm+1, ∂s(Xm+1 − Xm)
)h

�m

=
N∑
j=1

[
|hmj |

(
Ẑk(θ

m
j )

hm+1
j

|hmj |

)
· h

m+1
j − hmj

|hmj |

]

=
N∑
j=1

[
1

|hmj |
(
Ẑk(θ

m
j )hm+1

j

)
· (hm+1

j − hmj )

]
(4.9)

Combining local energy estimate (4.5) with equation (4.9) gives

(
Ẑk(θ

m)∂sXm+1, ∂s(Xm+1 − Xm)
)h

�m

≥
N∑
j=1

[
|hm+1

j |γ̂ (θm+1
j ) − |hmj |γ̂ (θmj )

]

=
N∑
j=1

|hm+1
j |γ̂ (θm+1

j ) −
N∑
j=1

|hmj |γ̂ (θmj ) = Wm+1
c − Wm

c .

(4.10)

By taking ϕh = μm+1,ωh = Xm+1 − Xm in (3.6), we have

(
Ẑk(θ

m)∂sXm+1, ∂s(Xm+1 − Xm)
)h

�m
=

(
μm+1nm+ 1

2 , Xm+1 − Xm
)h

�m

= −τ
(
∂sμ

m+1, ∂sμ
m+1

)h
�m

.

(4.11)

Together with (4.10) yields

Wm+1
c − Wm

c ≤ −τ
(
∂sμ

m+1, ∂sμ
m+1

)h
�m

≤ 0, ∀m ≥ 0. (4.12)

This completes the proof of Theorem 3.1. 
�

5 Upper bound of theminimal stabilizing function

To establish the existence of k0(θ) with the optimal energy stability condition (1.4), a very
sharp estimate is required for Q(φ, θ). Comparing to other estimates in the literature [8, 60],
this estimate explicitly relates to both Pα(φ, θ) and γ̂ (θ). Lemma 5.1 provides the crucial
estimate, which is essential for our existence proof. We start with the following lemma to
explore the properties of the optimal energy stability condition (1.4).

Remark 5.1 In [60], the bound of Q(φ, θ) is controlled by only concerning with γ̂ (θ). In
[8], the authors establish the required estimates by coupling Pα(φ, θ) and Q(φ, θ) with
γ̂ (θ) separately. Therefore, the estimates they obtained are relatively less refined. Here, we
explicitly combine Pα, γ̂ (θ) and Q to obtain a sharper estimate.
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Lemma 5.1 Let f be a non-negative C2 function on 2πT. Then for any positive constant
C ≥ sup

2πT
| f ′′|, we have

| f ′(x)y| ≤ f (x) + 1

2
sup
2πT

| f ′′| y2 ≤ f (x) + C

2
y2, ∀x, y ∈ 2πT. (5.1)

Proof Since f is C2 defined on 2πT, we know f ′′ is bounded. By the mean value theorem
and the non-negativity of f , for any positive constant C ≥ sup

2πT
| f ′′|, it holds

0 ≤ f (x + y) ≤ f (x) + f ′(x)y + C

2
y2, ∀x, y ∈ 2πT. (5.2)

Therefore, we know − f ′(x)y ≤ f (x) + C
2 y

2 and f ′(x)y ≤ f (x) + C
2 y

2, which implies
(5.1). 
�
Remark 5.2 Lemma 5.1 plays a crucial role in bounding Q(φ, θ) and analyzing the critical
situation when φ = π . It’s challenging to obtain similar inequalities in the γ (n) formulation.

Remark 5.3 If attempting to obtain an inequality similar to Lemma 5.1 in the γ (n) formula-
tion, thorny difficulties may arise. Suppose γ (n) is expanded at n0, when the line connecting
n, n0 passes through the origin, the Hessian matrix Hγ becomes unbounded as it has no
definition at 0. This prevents its gradient ∇γ (n) from being effectively controlled. Even if a
similar estimate can be obtained, the corresponding coefficientC would depend on n0, rather
than being a constant as in the case of γ̂ (θ) formulation.

Lemma 5.2 (Estimation of Q(φ, θ)) Suppose the optimal energy stability condition (1.4)
holds. For Q(φ, θ) defined in (4.1b). Then

|Q(φ, θ)| ≤ |PA(θ)(φ, θ) + γ̂ (θ)|, ∀φ ∈ 2πT, (5.3)

where A(θ) is defined in (4.4).

Proof Firstly, we notice that the lower bound of Q(φ, θ) can be obtained by

Q(φ, θ) + P0(φ, θ) + γ̂ (θ) = γ̂ (θ − φ) + γ̂ (θ)(2 + cosφ) − γ̂ ′(θ)(sin φ + sin 2φ)

≥ γ̂ (θ − φ) + γ̂ (θ) − γ̂ ′(θ)(1 + 2 cosφ) sin φ

≥ γ̂ (θ) − 3|γ̂ ′(θ)|| sin φ|
≥ −9

2
sup
2πT

|γ̂ ′′| sin2 φ, (5.4)

where the last inequality comes from (5.2). Furthermore, using the fact that A(θ) ≥ 9
2 sup
2πT

|γ̂ ′′|
and PA(θ)(φ, θ) = P0(φ, θ) + A(θ) sin2 φ, we have

Q(φ, θ) ≥ −PA(θ)(φ, θ) − γ̂ (θ), ∀φ ∈ 2πT. (5.5)

For the other direction of the inequality, we first observe that Q(0, θ)− P0(0, θ)− γ̂ (θ) =
0, and Q(π, θ)− P0(π, θ)− γ̂ (θ) = − (

3γ̂ (θ) − γ̂ (θ − π)
) ≤ 0. Thus we divide it into the

following two cases:
Case 1: For |φ| ≤ π

2 . Apply the mean value theorem to Q(·, θ) − P0(·, θ) − γ̂ (θ) on
[φ, 0], we know there exists a ξ ∈ [φ, 0], |ξ | ≤ π

2 such that

Q(φ, θ) − P0(φ, θ) − γ̂ (θ)
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= 1

2

(
γ̂ ′′(θ − ξ) − γ̂ (θ) cos ξ + γ̂ ′(θ) sin ξ − 4γ̂ ′(θ) sin 2ξ

)
φ2

≤ 1

2

(
sup
2πT

|γ̂ ′′| + 5|γ̂ ′(θ)| + γ̂ (θ)

) (
π2

4
sin2 φ

)

≤ A(θ) sin2 φ. (5.6)

Case 2: For |φ − π | < π
2 . By the condition (1.4), we know 3γ̂ (θ) − γ̂ (θ − π) is a

non-negative C2 function. Using Lemma 5.1 to 3γ̂ (θ) − γ̂ (θ − π), we have∣∣(3γ̂ ′(θ) − γ̂ ′(θ − π)
)
(φ − π)

∣∣

≤ (
3γ̂ (θ) − γ̂ (θ − π)

) +
sup

θ∈2πT

∣∣3γ̂ ′′(θ) − γ̂ ′′(θ − π)
∣∣

2
(φ − π)2

≤ (
3γ̂ (θ) − γ̂ (θ − π)

) + 2 sup
2πT

|γ̂ ′′|(φ − π)2, ∀|φ − π | <
π

2
.

Apply the mean value theorem to Q(·, θ) − P0(·, θ) − γ̂ (θ) on [φ, π], there exists a
ξ ∈ [φ, π] with |ξ − π | < π

2 such that

Q(φ, θ) − P0(φ, θ) − γ̂ (θ)

= − (
3γ̂ (θ) − γ̂ (θ − π)

) + (
3γ̂ ′(θ) − γ̂ ′(θ − π)

)
(φ − π)

+ 1

2

(
γ̂ ′′(θ − ξ) − γ̂ (θ) cos ξ + γ̂ ′(θ) sin ξ − 4γ̂ ′(θ) sin 2ξ

)
(φ − π)2

≤ − (
3γ̂ (θ) − γ̂ (θ − π)

) + (
3γ̂ (θ) − γ̂ (θ − π)

)

+ 1

2

(
sup
2πT

|γ̂ ′′| + 5|γ̂ ′(θ)| + γ̂ (θ) + 4 sup
2πT

|γ̂ ′′|
)

(φ − π)2

≤ π2

8

(
5 sup
2πT

|γ̂ ′′| + 5|γ̂ ′(θ)| + γ̂ (θ)

)
sin2 (φ − π) = A(θ) sin2 φ. (5.7)

Combining (5.6) with (5.7) yields

Q(φ, θ) ≤ P0(φ, θ) + γ̂ (θ) + A(θ) sin2 φ = PA(θ)(φ, θ) + γ̂ (θ), ∀φ ∈ 2πT. (5.8)

This completes the proof. 
�
With the help of the sharp estimate given in Lemma 5.2, Theorem 4.1 is ready to be proven.

Proof (Existence of the minimal stabilizing function) By Lemma 5.2, we have

Q2(φ, θ) ≤ (
PA(θ)(φ, θ) + γ̂ (θ)

)2 (5.9)

Recall the definition of Pα(φ, θ) in (4.1a), we have Pα(φ, θ) = P0(φ, θ) + α sin2 φ, and
further

4γ̂ (θ)Pα(φ, θ) − Q2(φ, θ)

≥ 4γ̂ (θ)PA(θ)(φ, θ) − (
PA(θ)(φ, θ) + γ̂ (θ)

)2 + 4γ̂ (θ) (α − A(θ)) sin2 φ

= − (
PA(θ)(φ, θ) − γ̂ (θ)

)2 + 4γ̂ (θ) (α − A(θ)) sin2 φ

=
(
− (−2γ̂ ′(θ) cosφ + A(θ) sin φ

)2 + 4γ̂ (θ) (α − A(θ))
)
sin2 φ

≥ [
4γ̂ (θ)α − A2(θ) − 4|γ̂ ′(θ)|2 − 4γ̂ (θ)A(θ)

]
sin2 φ.

(5.10)
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The last inequality follows from the fact that |a cosφ + b sin φ| ≤ √
a2 + b2.

Therefore, for any α ≥ 1
4γ̂ (θ)

[
A2(θ) + 4γ̂ (θ)A(θ) + 4|γ̂ ′(θ)|2], we have

4γ̂ (θ)Pα(φ, θ) − Q2(φ, θ) ≥ 0, ∀φ ∈ 2πT.

Which implies that

k0(θ) ≤ 1

4γ̂ (θ)

[
A2(θ) + 4γ̂ (θ)A(θ) + 4|γ̂ ′(θ)|2] < ∞. (5.11)


�

6 Numerical results

In this section, numerical experiments are presented to demonstrate the high performance of
the proposed SP-PFEM. We illustrate the efficiency/accuracy using a convergence test, and
verify the structure-preserving properties of the proposed method, i.e. area conservation and
unconditional energy stability.

In the convergence tests, the following two types of anisotropies are considered:

– Case I: γ̂ (θ) = 1 + β cos 3θ with |β| < 1. It is weakly anisotropic when |β| ≤ 1
8 and

strongly anisotropic otherwise;

– Case II: γ̂ (θ) =
√(

5
2 + 3

2 sgn(n1)
)
n21 + n22, here (n1, n2) = (− sin θ, cos θ).

The schemes formally have the quadratic convergence rate in space and linear convergence
rate in time, so the uniform time step τ is chosen as τ = h2, unless it is stated otherwise.

We adopt the manifold distance [39, 61]

M(�1, �2):=|(�1\�2) ∪ (�2\�1)| = 2|�1 ∪ �2| − |�1| − |�2|, (6.1)

to measure the distance between two curves�1, �2, where�i (i = 1, 2) represent the interior
regions of �i and |�i | denotes its area.

Let �m be the numerical approximation of �h(t = tm :=mτ), the numerical error is given
as

eh(t)
∣∣∣
t=tm

:=M(�m, �(t = tm)). (6.2)

Since the exact solution cannot be obtained analytically, we numerically approximated�(t =
tm) using fine meshes he = 2−8, τe = 2−16 in (3.6).

Following indicators are introduced to numerically demonstrate mesh quality, area con-
servation and energy stability: the weighted mesh ratio

Rh
γ (t):=

max
1≤ j≤N

γ̂ (θ j )|h j |
min

1≤ j≤N
γ̂ (θ j )|h j | , (6.3)

the normalized area loss and the normalized energy for closed curves,

�Ah
c (t)

Ah
c (0)

∣∣∣∣
t=tm

:= Am
c − A0

c

A0
c

,
Wh

c (t)

Wh
c (0)

∣∣∣∣
t=tm

:=Wm
c

W 0
c

. (6.4)
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Fig. 2 Minimal stabilizing function k0(θ) and upper bound K (θ) in (4.3) for Case I with β = 1
2

Fig. 3 Convergence rates of the SP-PFEM (3.6) for Case I with β = 1/9 (a) at different times with k(θ) =
k0(θ), and (b) at t = 0.5 with different k(θ); and for Case II (c) at different times with k(θ) = k0(θ), and (d)
at t = 0.5 with different k(θ)

In the following simulations, the initial shapes are always chosen as an ellipse with major
axis 4 and minor axis 1, except it is stated otherwise. In Newton’s iteration, the tolerance
value is set to be tol = 10−12.

The minimal stabilizing function k0(θ) is obtained as follows: we solve the optimiza-
tion problem (4.2) for θ j = −π + j π

10 , 0 ≤ j < 20 to determine k0(θ j ), then do linear
interpolation for the intermediate points.

We first validate the upper bound of k0(θ) provided in Theorem 4.1 (cf. Fig. 2). Here,
K (θ) denotes the upper bound given in (4.3).

6.1 Efficiency, accuracy and structure-preserving property

It can be observed from Fig. 3–Fig. 6 that:

– The SP-PFEM (3.6) possesses second-order spatial and first-order temporal accuracy (cf.
Fig. 3).
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Fig. 4 Normalized area loss (blue dash line) and iteration number (red line) of the SP-PFEM (3.6) with
k(θ) = k0(θ) and h = 2−6, τ = 2−12 for (a) Case I with β = 1/2; and for (b) Case II

Fig. 5 Normalized energy of the SP-PFEM (3.6) with k(θ) = k0(θ) for (a) Case I with β = 1/2; and for (b)
Case II

– The normalized area loss is around 10−15, matching the order of the round-off error (cf.
Fig. 4). Thus the area is conserved up to the machine precision.

– Numbers of Newton’s iteration descend to 2 in a very short time, and finally 1. This
observation suggests that the fully implicit scheme can be solvedwith high computational
efficiency (cf. Fig. 4).

– The normalized energy is monotonically decreasing when γ̂ (θ) satisfies condition (1.4)
(cf. Fig. 5). For Case I, condition (1.4) requires 0 < β ≤ 1

2 , Fig. 5 (a) shows that the
proposed method (3.6) still guarantees energy dissipation when β takes its maximum,
confirming the conclusion of Theorem 3.1. In contrast to the conclusion in [4], (3.6) also
exhibits unconditional energy stability for asymmetric surface energies.

– The weighted mesh ratio Rh
γ (t) tends to a constant as t → +∞, which suggests an

asymptotic quasi-uniform mesh distribution of (3.6) (cf. Fig. 6).

6.2 Application for morphological evolutions

In the following we apply the SP-PFEM (3.6) to simulate the morphological evolutions of
closed curves under anisotropic surface diffusion. The mesh size is chosen as h = 2−6, with
the time step size τ = h2.
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Fig. 6 Weightedmesh ratio of the SP-PFEM (3.6) for Case I with β = 1/9 is illustrated in (a) for k(θ) = k0(θ)

with different h, and in (b) for different k(θ)with h = 2−6; and for Case II is presented in (c) for k(θ) = k0(θ)

with different h, and in (d) for different k(θ) with h = 2−6

Fig. 7 plots the morphological evolutions of an ellipse with major axis 4 and minor axis
1 under anisotropic surface diffusion with four different surface energies:

(a) the 3-fold anisotropy [6]: γ̂ (θ) = 1 + 1
2 cos 3θ ;

(b) the piecewise BGN-anisotropy [18]: γ̂ (θ) =
√(

5
2 + 3

2 sgn(n1)
)
n21 + n22, with n =

(n1, n2)T :=(− sin θ, cos θ)T ;
(c) the 4-fold anisotropy [6, 59]: γ̂ (θ) = 1 + 1

10 cos 4θ ;

(d) the regularized crystalline anisotropy [46]: γ̂ (θ) = 1 +
√

ε2 + (1 − ε2) sin2 m
2 θ , with

ε = 0.1,m = 7.

In the above surface energies, anisotropy (c) is symmetric while others are asymmetric.
In can be observed from Fig. 7, compared to the symmetrized SP-PFEM in [4], the proposed
SP-PFEM (3.6) is not only applicable to symmetric surface energies, but also to asymmetric
surface energies. Moreover, Fig. 7 (b) indicates that the proposed method also performs
effectively for γ̂ (θ) with lower regularity, i.e. globally C1 and piecewise C2. It demonstrates
improved performance across a broader range of surface energies.

6.3 Multiple equilibria for open curves in solid-state dewetting

Following similar derivations in [39, 40, 60], the SP-PFEM (3.6) can also be extended to
simulate the morphological evolutions of open curves in solid-state dewetting. The numer-
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Fig. 7 Morphological evolutions of an ellipse with major axis 4 and minor axis 1 under anisotropic surface
diffusion with different surface energies: (a) Case I with β = 1/2; (b) Case II; (c) the 4-fold anisotropy

γ̂ (θ) = 1 + 1
10 cos 4θ ; (d) the regularized crystalline anisotropy γ̂ (θ) = 1 +

√
ε2 + (1 − ε2) sin2 m

2 θ , with
ε = 0.1,m = 7. The red and blue lines represent the initial shape and the numerical equilibrium, respectively;
and the black dash lines represent the intermediate curves

ical scheme is analogous to [40, (5.3)] or [60, (6.6)]. Details are omitted here for brevity.
The same as Theorem 3.1, the corresponding method is area conservative and proven to be
unconditionally energy-stable under (1.4).

As it has been derived in [5], stable equilibrium shapes of two-dimensional solid-state
dewetting with anisotropic surface energies can be predicted through an approach called
generalized Winterbottom construction. If the surface energy is strongly anisotropic, there
may exist multiple stable equilibrium island shapes. The generalizedWinterbottom construc-
tion offers a simple way to construct all possible stable equilibrium shapes via the following
steps [5]:

(i) Draw the Wulff envelope: for a given anisotropy γ̂ (θ), draw its γ -plot (blue line in
Fig. 8 (a)). Obtain the Wulff envelope (black line in Fig. 8 (a)) from the γ -plot by the
following formula [5, 46]:

{
x(θ) = −γ̂ (θ) sin θ − γ̂ ′(θ) cos θ,

y(θ) = γ̂ (θ) cos θ − γ̂ ′(θ) sin θ,
θ ∈ 2πT. (6.5)

(ii) Remove all unstable orientations: Remove all unstable orientations from the Wulff
envelope for which γ̂ (θ) + γ̂ ′′(θ) < 0 (black dash line in Fig. 8 (b)). Only “ears” in
the Wulff envelope are unstable (cf. Fig. 8).
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Fig. 8 Generalized Winterbottom construction for surface energy γ̂ (θ) = 1 + 0.4 cos 4θ and σ = cos 5π
6 .

Green shaded and blue shaded regions are the stable equilibrium shapes

Fig. 9 Illustration of the generalized Winterbottom construction (a) and numerical equilibrium shapes (b)–(c)
starting with different initial curves for the 4-fold surface energy γ̂ (θ) = 1 + 0.3 cos 4(θ + π

6 ) and σ = 0.2

(iii) Truncate the Wulff envelope: Truncate theWulff envelope with flat substrate line y = σ

(red dash line in Fig. 8(b)–Fig. 8(f)). Then stable equilibria are regions enclosed by the
Wulff envelope and the substrate line (green shaded regions in Fig. 8(c)–Fig. 8(e) and
blue shaded regions in Fig. 8 (f)).

We applied our method to simulate equilibria of different initial thin films in solid-state
dewettingwith them-fold surface energy γ̂ (θ) = 1+β cosm(θ−θ0). It is strongly anisotropic
when |β| > 1

m2−1
. Results are exhibited in Fig. 9–Fig. 12.

Fig. 9–Fig. 12 exhibit the generalizedWulff construction and morphological evolutions to
the numerical equilibria by the SP-PFEM for the following two types of strongly anisotropic
surface energy:

– Fig. 9–Fig. 10: (symmetric) γ̂ (θ) = 1 + 0.3 cos 4
(
θ + π

6

)
, σ = 0.2;

– Fig. 11–Fig. 12: (asymmetric) γ̂ (θ) = 1 + 0.3 cos 3
(
θ + π

6

)
, σ = −0.2.

Fig. 9 and Fig. 11 illustrates the comparison between the numerical equilibria and stable
equilibrium shapes predicted by the generalized Winterbottom construction. The numerical
equilibria are colored in blue, the initial curves are displayed in red dash-dot line, and the cor-
respondingWulff envelope is shown in black dash line. It can be observed that the numerical
results and the theoretical predictions coincides very well. Unlike the symmetrized SP-PFEM
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Fig. 10 Morphological evolutions of different initial shapes with the 4-fold anisotropy γ̂ (θ) = 1 +
0.3 cos 4

(
θ + π

6
)
, σ = 0.2: (a) a unit square; (b) a right trapezoid. The red and blue lines represent the

initial shape and the numerical equilibrium, respectively; and the black dash lines represent the intermediate
curves

Fig. 11 Illustration of the generalizedWinterbottom construction (a) and numerical equilibrium shapes (b)–(c)
starting with different initial curves for the 3-fold surface energy γ̂ (θ) = 1+ 0.3 cos 3(θ + π

6 ) and σ = −0.2

Fig. 12 Morphological evolutions of different initial shapes with the 3-fold anisotropy γ̂ (θ) = 1 +
0.3 cos 3

(
θ + π

6
)
, σ = −0.2: (a) a unit square; (b) a right trapezoid. The red and blue lines represent the

initial shape and the numerical equilibrium, respectively; and the black dash lines represent the intermediate
curves

in [40], our method demonstrates strong performance for both symmetric and asymmetric
surface energies.
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7 Conclusions

We proposed a structure-preserving parametric finite element method (SP-PFEM) with opti-
mal energy stability condition 3γ̂ (θ) − γ̂ (θ − π) ≥ 0 for anisotropic surface diffusion in
two dimensions. By utilizing a symmetric surface energy matrix Ẑk(θ), the governing equa-
tion of anisotropic surface diffusion is reformulated into a conservative weak formulation.
A PFEM using piecewise linear functions for spatial discretization and an implicit-explicit
Euler method for the temporal discretization is employed for this weak formulation. The
SP-PFEM is second-order accurate in space, first-order accurate in time and proven to be
area conservative at the fully discrete level. With a sharp estimate lemma, we established a
global upper bound to explicitly characterize the existence of theminimal stabilizing function
k0(θ) under the condition 3γ̂ (θ) − γ̂ (θ − π) ≥ 0, without requiring any additional condi-
tion. Then a required local energy estimate is established, demonstrating that our method is
unconditionally energy-stable with sufficiently large k(θ) ≥ k0(θ). Since this condition is
also a necessary condition for the local energy estimate, our method is considered optimal
and cannot be further improved. Extensive numerical results are presented to demonstrate
the efficiency, accuracy and structure-preserving properties of the proposed method. Addi-
tionally, the proposed method can be transformed into the symmetrized SP-PFEM from [4,
40] under the γ (n) formulation. Our analysis indicates that the symmetry condition in [4,
40] can also be improved to 3γ (n) − γ (−n) ≥ 0.
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