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We proposed a structure-preserving stabilized parametric finite element method (SPFEM) for the 
evolution of closed curves under anisotropic surface diffusion with an arbitrary surface energy 
𝛾̂(𝜃). By introducing a non-negative stabilizing function 𝑘(𝜃) depending on 𝛾̂(𝜃), we obtained a 
novel stabilized conservative weak formulation for the anisotropic surface diffusion. A SPFEM 
is presented for the discretization of this weak formulation. We construct a comprehensive 
framework to analyze and prove the unconditional energy stability of the SPFEM under a very 
mild condition on 𝛾̂(𝜃), including the critical case where 3𝛾̂(𝜃∗) = 𝛾̂(𝜃∗ − 𝜋). This method can be 
applied to simulate solid-state dewetting of thin films with arbitrary surface energies, which are 
characterized by anisotropic surface diffusion and contact line migration. Extensive numerical 
results are reported to demonstrate the efficiency, accuracy and structure-preserving properties 
of the proposed SPFEM with anisotropic surface energies 𝛾̂(𝜃) arising from different applications.

1. Introduction

Surface diffusion is a widespread process involving the movement of atoms, molecules and atomic clusters at solid material in-

terfaces [39]. Due to different surface lattice orientation, an anisotropic evolution process is generated for a solid material, which is 
called anisotropic surface diffusion in the literature. Surface diffusion with an anisotropic surface energy plays an important role as a 
crucial mechanism and/or kinetics in various fields such as epitaxial growth [23,28], surface phase formation [52], heterogeneous 
catalysis [40], and other pertinent fields within surface and materials science [13,42,43]. In fact, broader and consequential appli-

cations of surface diffusion have been discovered in materials science and solid-state physics, notably in areas such as the crystal 
growth of nanomaterials [25,26] and solid-state dewetting [6,29,31,33,44,48,49,52].

As shown in Fig. 1, let Γ ∶= Γ(𝑡) be a closed curve in two dimensions (2D) associated with a given anisotropic surface energy 
𝛾̂(𝜃) > 0, where 𝜃 ∈ 2𝜋𝕋 ∶= ℝ∕2𝜋ℤ represents the angle between the vertical axis and unit outward normal vector 𝒏 = 𝒏(𝜃) ∶=
(− sin𝜃, cos𝜃)𝑇 . It should be noted that the anisotropy can also be viewed as a function 𝛾(𝒏) of the normal vector 𝒏 [32,33,46]. While 
𝛾(𝒏) = 𝛾(− sin𝜃, cos𝜃) is equivalent to 𝛾̂(𝜃) by the one-to-one correspondence 𝒏(𝜃) = (− sin𝜃, cos𝜃)𝑇 , the 𝛾̂(𝜃) formulation is often 
more convenient and straightforward in 2D.

Suppose Γ is represented by 𝑿 ∶=𝑿(𝑠, 𝑡) = (𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡))𝑇 , where 𝑠 denotes the arc-length parameter, and 𝑡 represents the time. 
The motion of Γ under anisotropic surface diffusion is governed by the following geometric flow [18,38]:
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Fig. 1. An illustration of a closed curve under anisotropic surface diffusion with an anisotropic surface energy 𝛾̂(𝜃), while 𝜃 is the angle between the 𝑦-axis and the 
unit outward normal vector 𝒏 = 𝒏(𝜃) ∶= (− sin𝜃, cos𝜃)𝑇 . 𝝉 = 𝝉(𝜃) ∶= (cos𝜃, sin𝜃)𝑇 represents the unit tangent vector.

𝜕𝑡𝑿 = 𝜕𝑠𝑠𝜇𝒏, (1.1)

where 𝜇 is the weighted curvature (or chemical potential) defined as

𝜇 ∶= [𝛾̂(𝜃) + 𝛾̂ ′′(𝜃)]𝜅 (1.2)

with 𝜅 ∶= −(𝜕𝑠𝑠𝑿) ⋅ 𝒏 being the curvature.

The anisotropic surface diffusion (1.1) is a fourth-order and highly nonlinear geometric flow, which possesses two major geometric 
properties, i.e., the area conservation and the energy dissipation. Let 𝐴𝑐 (𝑡) be the area of the region Ω(𝑡) enclosed by Γ(𝑡), and 𝑊𝑐(𝑡)
be the total surface free energy, which are defined as

𝐴𝑐(𝑡) ∶= ∫
Ω(𝑡)

1 d𝑥d𝑦 = ∫
Γ(𝑡)

𝑦(𝑠, 𝑡)𝜕𝑠𝑥(𝑠, 𝑡) d𝑠, 𝑊𝑐(𝑡) ∶= ∫
Γ(𝑡)

𝛾̂(𝜃) d𝑠. (1.3)

One can prove that [4,6,13]

d
d𝑡

𝐴𝑐(𝑡) = ∫
Γ(𝑡)

𝜕𝑠𝑠𝜇 d𝑠 = 0, d
d𝑡

𝑊𝑐(𝑡) = ∫
Γ(𝑡)

𝜇 𝜕𝑠𝑠𝜇 d𝑠 = −∫
Γ(𝑡)

|𝜕𝑠𝜇|2 d𝑠 ≤ 0, (1.4)

which immediately implies the anisotropic surface diffusion (1.1)-(1.2) satisfies the area conservation and energy dissipation, i.e.,

𝐴𝑐(𝑡) ≡𝐴𝑐(0), 𝑊𝑐(𝑡) ≤𝑊𝑐(𝑡1) ≤𝑊𝑐(0), ∀𝑡 ≥ 𝑡1 ≥ 0. (1.5)

When 𝛾̂(𝜃) ≡ 1, ∀𝜃 ∈ 2𝜋𝕋 , the weighted curvature 𝜇 reduces to 𝜅, and it is referred to as isotropic surface energy. If 𝛾̂(𝜃) is not a 
constant function and 𝛾̂(𝜃) + 𝛾̂ ′′(𝜃) > 0 for all 𝜃 ∈ 2𝜋𝕋 , we classify the surface energy as weakly anisotropic, otherwise, it is termed 
strongly anisotropic. Typical anisotropic surface energies 𝛾̂(𝜃) which are widely employed in materials science include:

1. the 𝑚-fold anisotropic surface energy [4]

𝛾̂(𝜃) = 1 + 𝛽 cos𝑚(𝜃 − 𝜃0), 𝜃 ∈ 2𝜋𝕋 , (1.6)

where 𝑚 = 2, 3, 4, 6, |𝛽| < 1 are dimensionless strength constants, 𝜃0 ∈ 2𝜋𝕋 is a constant. Note that 𝛾̂(𝜃) is weakly anisotropic 
when |𝛽| < 1

𝑚2−1 , and strongly anisotropic otherwise.

2. the ellipsoidal anisotropic surface energy [47]

𝛾̂(𝜃) =
√

𝑎+ 𝑏 cos2 𝜃, 𝜃 ∈ 2𝜋𝕋 , (1.7)

where 𝑎, 𝑏 are two dimensionless constants satisfying 𝑎 > 0 and 𝑎 + 𝑏 > 0.

3. the Riemannian-like metric (also called BGN) anisotropic surface energy [14,16]

𝛾̂(𝜃) =
𝐿∑
𝑙=1

√
𝒏(𝜃)𝑇 𝐺𝑙𝒏(𝜃), 𝒏 = (−sin𝜃, cos𝜃)𝑇 , 𝜃 ∈ 2𝜋𝕋 , (1.8)

where 𝐿 ≥ 1, 𝐺𝑙 ∈ ℝ2×2 positive definite ∀1 ≤ 𝑙 ≤ 𝐿. When 𝐿 = 1, 𝐺1 = diag(𝑎, 𝑎 + 𝑏) in (1.8), the Riemannian-like metric 
anisotropy (1.8) collapses to the ellipsoidal anisotropic surface energy (1.7).

4. the piecewise anisotropic surface energy [20]

𝛾̂(𝜃) =
√(5

2
+ 3

2
sgn(𝑛1)

)
𝑛21 + 𝑛22, (1.9)
2

with 𝒏 = (𝑛1, 𝑛2)𝑇 ∶= (− sin𝜃, cos𝜃)𝑇 , 𝜃 ∈ 2𝜋𝕋 .
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Many numerical methods have been proposed for simulating the evolution of curves under surface diffusion, including the phase-

field method [22,24,29,45], the discontinuous Galerkin method [51], the marker particle method [21,50] and the parametric finite 
element method (PFEM) [1,12,15,17]. Among these methods, the energy-stable PFEM (ES-PFEM) by Barrett, Garcke, and Nürnberg 
[12], also referred to as BGN’s method, achieves the best performance in terms of mesh quality and unconditional energy-stability 
in the isotropic case. The ES-PFEM has been further extended to other geometric flows, such as the solid-state deweting problem 
[4,30,49], demonstrating its adaptability and robustness. Furthermore, Bao and Zhao have recently developed a structure-preserving 
PFEM (SP-PFEM) [2,3,11], which can preserve the enclosed mass at the fully-discretized level while also maintaining the unconditional 
energy stability. Extending these PFEMs to anisotropic surface diffusion is a major focus of recent research in surface diffusion. While 
BGN successfully adapted their methods to a specific Riemannian metric form [14,16], designing a SP-PFEM for anisotropic surface 
diffusion with arbitrary anisotropies remains challenging.

Lately, based on the 𝛾̂(𝜃) formulation, Li and Bao introduced a surface energy matrix 𝐺(𝜃) and extend the ES-PFEM from the 
isotropic cases to the anisotropic cases [36]. Due to the absence of a stabilizing term, their method requires a certain restrictive 
condition to ensure the energy stability. Subsequently, Bao, Jiang, and Li incorporated a stabilizing function within the 𝛾(𝒏) formu-

lation. They constructed a symmetric surface energy matrix 𝒁𝑘(𝒏) and proposed a symmetrized SP-PFEM for the anisotropic surface 
diffusion in [5,8]. Shortly afterward, it was extended to evolutions of open curves in solid-state dewetting [35]. The symmetrized 
SP-PFEM with the stabilizing function works effectively for symmetric surface energy distributions (i.e., 𝛾(𝒏) = 𝛾(−𝒏)) to maintain the 
geometric properties. However, there are different anisotropic surface energies 𝛾̂ (𝜃) which are not symmetrically distributed or do 
not satisfy the specific condition, such as the 3-fold anisotropic surface energy (1.6) [4,49]. Very recently, based on the 𝛾(𝒏) formula-

tion, Bao and Li introduced a novel surface energy matrix and established a comprehensive analytical framework to demonstrate the 
unconditional energy stability of the proposed SP-PFEM [7,9]. Based on this framework, they successfully reduced the requirement 
for the anisotropy to 3𝛾(𝒏) > 𝛾(−𝒏), ∀𝒏 ∈ 𝕊1.

However, the critical situation 3𝛾(𝒏∗) = 𝛾(−𝒏∗), 𝒏∗ ∈ 𝕊1 was not addressed in their analytical framework. It is natural to consider 
the derivative for this critical case. However, analyzing the gradient of 𝛾(𝒏) is challenging since it is defined on the unit sphere 𝕊1. 
In contrast, the 𝛾̂(𝜃) formulation, defined on 2𝜋𝕋 , possesses a simpler derivative and thus allows for a better analysis of the critical 
situation 3𝛾̂(𝜃∗) = 𝛾̂(𝜃∗ − 𝜋), 𝜃∗ ∈ 2𝜋𝕋 . Based on this key insight, we are able to provide an elaborate investigation of the critical 
situation, extending the previously analysis framework to 3𝛾̂(𝜃∗) = 𝛾̂(𝜃∗ − 𝜋).

The main objective of this paper is to propose a structure-preserving stabilized parametric finite element method (SPFEM) for 
simulating surface diffusion (1.1) with the surface energy 𝛾̂(𝜃) under very mild conditions as

(i) 3𝛾̂(𝜃) ≥ 𝛾̂(𝜃 − 𝜋), ∀𝜃 ∈ 2𝜋𝕋 ,

(ii) 𝛾̂ ′(𝜃∗) = 0, when 3𝛾̂(𝜃∗) = 𝛾̂(𝜃∗ − 𝜋), 𝜃∗ ∈ 2𝜋𝕋 .

Compared to the 𝛾(𝒏) formulation, the 𝛾̂(𝜃) formulation has the following advantages:

(i) it is more intuitive and has a simpler form in practical applications;

(ii) it enables a reduction in the regularity requirement for the anisotropy from 𝐶2 to globally 𝐶1 and piecewise 𝐶2;

(iii) it allows for a more convenient discussion of critical situations as 3𝛾̂(𝜃∗) = 𝛾̂(𝜃∗ − 𝜋) for some 𝜃∗ ∈ 2𝜋𝕋 in 2D.

The remainder of this paper is organized as follows: In section 2, we introduce a stabilized surface energy matrix 𝑮̂𝑘(𝜃) and 
propose a new conservative formulation for anisotropic surface diffusion. In section 3, we present a novel weak formulation based 
on the conservative form, introduce its spatial semi-discretization, and propose a full discretization by SPFEM. In section 4, we 
analyze the structure-preserving properties of the proposed scheme, i.e., area conservation and unconditional energy stability, and 
develop a comprehensive framework for energy stability. It starts from defining a minimal stabilizing function 𝑘0(𝜃), then we obtain 
the main result through a local energy estimate under the assumption that 𝑘0(𝜃) is well-defined. The existence of 𝑘0(𝜃) is further 
demonstrated in section 5. In section 6, we extend the SPFEM for simulating solid-state dewetting of thin films under anisotropic 
surface diffusion and contact line migration. Extensive numerical results are provided in section 7 to demonstrate the efficiency, 
accuracy and structure-preserving properties of the proposed SPFEM. Finally, we conclude in section 8.

2. A conservative formulation

In this section, we propose a novel formulation with stabilization for (1.1) and derive a conservative form by introducing a 
stabilized surface energy matrix.

Applying the geometric identity 𝜅𝒏 = −𝜕𝑠𝑠𝑿 [37], the anisotropic surface diffusion equations (1.1)-(1.2) can be reformulated into

𝒏 ⋅ 𝜕𝑡𝑿 − 𝜕𝑠𝑠𝜇 = 0, 0 < 𝑠 < 𝐿(𝑡), 𝑡 > 0, (2.1a)

𝜇𝒏+
[
𝛾̂(𝜃) + 𝛾̂ ′′(𝜃)

]
𝜕𝑠𝑠𝑿 = 𝟎, (2.1b)

where 𝐿(𝑡) = ∫Γ(𝑡) d𝑠 is the length of Γ(𝑡).
For a vector 𝒗 = (𝑣1, 𝑣2)𝑇 ∈ℝ2, we denote 𝒗⟂ ∈ℝ2 as its perpendicular vector which is the clockwise rotation of 𝒗 by 𝜋2 , i.e.

⟂ 𝑇

(
0 −1

)

3

𝒗 ∶= (𝑣2,−𝑣1) = −𝐽𝒗, with 𝐽 = 1 0 . (2.2)
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Then the tangent vector 𝝉 ∶= 𝜕𝑠𝑿, and unit normal vector 𝒏 can be written as 𝒏 = −𝝉⟂. And the tangent vector can also be given by 
𝝉 = 𝒏⟂.

Theorem 2.1. For the weighted curvature 𝜇 given in (1.2), the following identity holds:

𝜇𝒏 = −𝜕𝑠
(
𝑮̂𝑘(𝜃)𝜕𝑠𝑿

)
, (2.3)

with

𝑮̂𝑘(𝜃) =
(

𝛾̂(𝜃) −𝛾̂ ′(𝜃)
𝛾̂ ′(𝜃) 𝛾̂(𝜃)

)
+ 𝑘(𝜃)

(
sin2 𝜃 −cos𝜃 sin𝜃

−cos𝜃 sin𝜃 cos2 𝜃

)
, ∀𝜃 ∈ 2𝜋𝕋 , (2.4)

𝑘(𝜃) ∶ 2𝜋𝕋 →ℝ≥0 is a non-negative stabilizing function.

Proof. Noticing

𝒏 = −𝜕𝑠𝑿⟂ = (−𝜕𝑠𝑦, 𝜕𝑠𝑥)𝑇 , 𝜕𝑠𝑥 = cos𝜃, 𝜕𝑠𝑦 = sin𝜃, (2.5)

therefore

𝜕𝑠𝑠𝑥 = −sin𝜃𝜕𝑠𝜃, 𝜕𝑠𝑠𝑦 = cos𝜃𝜕𝑠𝜃, (2.6)

which implies that

𝜅 = −(𝜕𝑠𝑠𝑿) ⋅ 𝒏 = 𝜕𝑠𝑠𝑥𝜕𝑠𝑦− 𝜕𝑠𝑠𝑦𝜕𝑠𝑥 = −(sin2 𝜃 + cos2 𝜃)𝜕𝑠𝜃 = −𝜕𝑠𝜃. (2.7)

By the geometric identity 𝜅𝒏 = −𝜕𝑠𝑠𝑿 and 𝜕𝑠𝑿 = 𝜏 = 𝒏⟂, we obtain

𝜅𝜕𝑠𝑿 = 𝜅𝒏⟂ = −𝜕𝑠𝑠𝑿⟂, 𝜅𝜕𝑠𝑿
⟂ = −𝜅𝒏 = 𝜕𝑠𝑠𝑿. (2.8)

Then by (2.7) and (2.8),

𝜕𝑠

(
𝛾̂(𝜃)𝜕𝑠𝑿

)
= 𝛾̂ ′(𝜃)𝜕𝑠𝜃𝜕𝑠𝑿 + 𝛾̂(𝜃)𝜕𝑠𝑠𝑿

= −𝜅𝛾̂ ′(𝜃)𝜕𝑠𝑿 + 𝛾̂(𝜃)𝜕𝑠𝑠𝑿

= 𝛾̂ ′′(𝜃)𝜕𝑠𝑠𝑿⟂ + 𝛾̂(𝜃)𝜕𝑠𝑠𝑿,

(2.9)

and

𝜕𝑠

(
𝛾̂ ′(𝜃)𝜕𝑠𝑿⟂

)
= 𝛾̂ ′′(𝜃)𝜕𝑠𝜃𝜕𝑠𝑿⟂ + 𝛾̂ ′(𝜃)𝜕𝑠𝑠𝑿⟂

= −𝜅𝛾̂ ′′(𝜃)𝜕𝑠𝑿⟂ + 𝛾̂ ′(𝜃)𝜕𝑠𝑠𝑿⟂

= −𝛾̂ ′′(𝜃)𝜕𝑠𝑠𝑿 + 𝛾̂ ′(𝜃)𝜕𝑠𝑠𝑿⟂.

(2.10)

Note that 𝒏𝑇 𝜕𝑠𝑿 = 𝒏 ⋅ 𝝉 ≡ 0, thus 𝜕𝑠
(
𝑘(𝜃)𝒏𝒏𝑇 𝜕𝑠𝑿

)
vanishes. Combining (2.1b), (2.9) and (2.10), we have

𝜇𝒏 = −[𝛾̂(𝜃) + 𝛾̂ ′′(𝜃)]𝜕𝑠𝑠𝑿 − 𝜕𝑠
(
𝑘(𝜃)𝒏𝒏𝑇 𝜕𝑠𝑿

)
= −𝜕𝑠

(
𝛾̂(𝜃)𝜕𝑠𝑿

)
+ 𝜕𝑠

(
𝛾̂ ′(𝜃)𝜕𝑠𝑿⟂

)
− 𝜕𝑠

(
𝑘(𝜃)𝒏𝒏𝑇 𝜕𝑠𝑿

)
= −𝜕𝑠

(
𝛾̂(𝜃)𝜕𝑠𝑿 − 𝛾̂ ′(𝜃)𝜕𝑠𝑿⟂ + 𝑘(𝜃)𝒏𝒏𝑇 𝜕𝑠𝑿

)
.

(2.11)

On the other hand, by (2.5), we have(
sin2 𝜃 −sin𝜃 cos𝜃

−sin𝜃 cos𝜃 cos2 𝜃

)
=
(
−sin𝜃
cos𝜃

)
(− sin𝜃, cos𝜃) = 𝒏𝒏

𝑇 , (2.12)

consequently

𝑮̂𝑘(𝜃)𝜕𝑠𝑿 =
[(

𝛾̂(𝜃) −𝛾̂ ′(𝜃)
𝛾̂ ′(𝜃) 𝛾̂(𝜃)

)
+ 𝑘(𝜃)

(
sin2 𝜃 −sin𝜃 cos𝜃

−sin𝜃 cos𝜃 cos2 𝜃

)]
𝜕𝑠𝑿

=
[
𝛾̂(𝜃)𝐼2 + 𝛾̂ ′(𝜃)𝐽 + 𝑘(𝜃)𝒏𝒏𝑇

]
𝜕𝑠𝑿

= 𝛾̂(𝜃)𝜕𝑠𝑿 − 𝛾̂ ′(𝜃)𝜕𝑠𝑿⟂ + 𝑘(𝜃)𝒏𝒏𝑇 𝜕𝑠𝑿,

(2.13)

where 𝐼2 is the 2 × 2 identity matrix. Substituting (2.13) into (2.11), the desired equality (2.3) is obtained. □

Applying (2.3), the governing geometric PDE (2.1) for anisotropic surface diffusion can be reformulated as the following conser-
4

vative form
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𝒏 ⋅ 𝜕𝑡𝑿 − 𝜕𝑠𝑠𝜇 = 0, (2.14a)

𝜇𝒏+ 𝜕𝑠
(
𝑮̂𝑘(𝜃)𝜕𝑠𝑿

)
= 0. (2.14b)

Remark 2.1. For the isotropic case, the curvature vector 𝜅𝒏 = −𝜕𝑠𝑠𝑿 = −𝜕𝑠
(
𝐼2𝜕𝑠𝑿

)
which inspired us to construct a proper stabilized 

conservative form as 𝜇𝒏 = −𝜕𝑠
(
𝑮̂𝑘(𝜃)𝜕𝑠𝑿

)
for the anisotropic case. The construction of the stabilization term is based on the following 

two ideas: i) the stabilization term should make no contribution at the continuous level, i.e. the tangent vector 𝜕𝑠𝑿 lies in the kernel of 
the stabilization term; ii) the stabilization term should be positive definite which brings numerous numerical advantages. Therefore, 

the stabilization term is formulated as 𝑘(𝜃)𝒏𝒏𝑇 = 𝑘(𝜃) 
(

sin2 𝜃 −cos𝜃 sin𝜃
−cos𝜃 sin𝜃 cos2 𝜃

)
.

Remark 2.2. If we take the stabilizing function 𝑘(𝜃) ≡ 0 in (2.4), then 𝑮̂𝑘(𝜃) =
(

𝛾̂(𝜃) −𝛾̂ ′(𝜃)
𝛾̂ ′(𝜃) 𝛾̂(𝜃)

)
collapses to the surface energy 

matrix 𝐺(𝜃) proposed in [36]. Moreover, with the adoption of the 𝛾(𝒏) formulation, we can define the corresponding stabilizing 
function 𝑘(𝒏) ∶= 𝑘(𝒏(𝜃)) = 𝑘(𝜃) by the one-to-one correspondence 𝒏 = 𝒏(𝜃) = (− sin𝜃, cos𝜃)𝑇 , and the stabilization term is simplified 
to 𝑘(𝒏)𝒏𝒏𝑇 . Consequently, 𝑮̂𝑘(𝜃) is transformed into the surface energy matrix 𝑮𝑘(𝒏) in [7].

Remark 2.3. At the continuous level, 𝑘(𝜃) makes no contribution, as 𝒏𝑇 𝜕𝑠𝑿 = 0. Thus, the conservative form (2.14) and the original 
form (2.1) are equivalent. At the discrete level, however, 𝑘(𝜃) serves as a stabilizing term, which relaxes the energy stability conditions 
for the anisotropy 𝛾̂(𝜃). For example, surface matrix 𝐺(𝜃) in [36] (absent the stabilizing term) only guarantees energy stability for 
specific cases of weakly anisotropic surface energy. In contrast, with this stabilizing term, this formulation can be applied to more 
general anisotropies, see (3.36)

3. A SPFEM for anisotropic surface diffusion

In this section, we first develop a novel weak formulation based on the conservative form (2.14) and present the spatial semi-

discretization of this weak formulation. After that, a structure-preserving SPFEM is proposed by adapting the implicit-explicit Euler 
method in time, which preserves area conservation and energy dissipation at the discrete level.

3.1. Weak formulation

In order to derive a weak formulation of equation (2.14), we introduce a time-independent variable 𝜌 which parameterizes Γ(𝑡)
over a fixed domain 𝜌 ∈ 𝕀 = [0, 1] as

Γ(𝑡) ∶=𝑿(𝜌, 𝑡) = (𝑥(𝜌, 𝑡), 𝑦(𝜌, 𝑡))𝑇 ∶ 𝕀 ×ℝ+ →ℝ2. (3.1)

The arc-length parameter 𝑠 can thus be computed by 𝑠 = ∫ 𝜌

0 |𝜕𝜌𝑿(𝑞, 𝑡)| d𝑞. (We do not distinguish 𝑿(𝜌, 𝑡) and 𝑿(𝑠, 𝑡) if there’s no 
misunderstanding.)

Introduce the following functional space with respect to the evolution curve Γ(𝑡) as

𝐿2(𝕀) ∶=
⎧⎪⎨⎪⎩𝑢 ∶ 𝕀→ℝ ∣ ∫

Γ(𝑡)

|𝑢(𝑠)|2 d𝑠 = ∫
𝕀

|𝑢(𝑠(𝜌, 𝑡))|2𝜕𝜌𝑠d𝑠 < +∞
⎫⎪⎬⎪⎭ , (3.2)

equipped with the 𝐿2-inner product(
𝑢, 𝑣

)
Γ(𝑡)

∶= ∫
Γ(𝑡)

𝑢(𝑠)𝑣(𝑠) d𝑠 = ∫
Γ(𝑡)

𝑢(𝑠(𝜌, 𝑡))𝑣(𝑠(𝜌, 𝑡))𝜕𝜌𝑠d𝜌, (3.3)

for any scalar (or vector) functions. The Sobolev spaces are defined as

𝐻1(𝕀) ∶=
{
𝑢 ∶ 𝕀→ℝ ∣ 𝑢 ∈𝐿2(𝕀), and 𝜕𝜌𝑢 ∈𝐿2(𝕀)

}
, (3.4a)

𝐻1
𝑝
(𝕀) ∶=

{
𝑢 ∈𝐻1(𝕀) ∣ 𝑢(0) = 𝑢(1)

}
. (3.4b)

Extensions of above definitions to the functions in [𝐿2(𝕀)]2, [𝐻1(𝕀)]2 and [𝐻1
𝑝
(𝕀)]2 are straightforward.

By multiplying the equation (2.14a) by a test function 𝜑 ∈ 𝐻1
𝑝
(𝕀), integrating over Γ(𝑡), and applying integration by parts, we 

obtain( ) ( )

5

𝒏 ⋅ 𝜕𝑡𝑿, 𝜑
Γ(𝑡)

+ 𝜕𝑠𝜇, 𝜕𝑠𝜑 Γ(𝑡)
= 0. (3.5)
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Similarly, by taking the dot product of equation (2.14b) with a test function 𝝎 = (𝜔1, 𝜔2)𝑇 ∈ [𝐻1
𝑝
(𝕀)]2 and integrating by parts, 

we have

0 =
(
𝜇𝒏+ 𝜕𝑠

(
𝑮̂𝑘(𝜃)𝜕𝑠𝑿

)
,𝝎

)
Γ(𝑡)

=
(
𝜇𝒏,𝝎

)
Γ(𝑡)

+
(
𝜕𝑠(𝑮̂𝑘(𝜃)𝜕𝑠𝑿),𝝎

)
Γ(𝑡)

=
(
𝜇𝒏,𝝎

)
Γ(𝑡)

−
(
𝑮̂𝑘(𝜃)𝜕𝑠𝑿, 𝜕𝑠𝝎

)
Γ(𝑡)

(3.6)

Combining (3.5) and (3.6), we propose a new weak formulation for (2.14) as follows: Given an initial closed curve Γ(0) ∶=𝑿(⋅, 0) =
𝑿0 ∈ [𝐻1

𝑝
(𝕀)]2, find the solution (𝑿(⋅, 𝑡) = (𝑥(⋅, 𝑡), 𝑦(⋅, 𝑡))𝑇 , 𝜇(⋅, 𝑡)) ∈ [𝐻1

𝑝
(𝕀)]2 ×𝐻1

𝑝
(𝕀), such that:(

𝒏 ⋅ 𝜕𝑡𝑿, 𝜑

)
Γ(𝑡)

+
(
𝜕𝑠𝜇, 𝜕𝑠𝜑

)
Γ(𝑡)

= 0, ∀𝜑 ∈𝐻1
𝑝
(𝕀), (3.7a)(

𝜇𝒏,𝝎

)
Γ(𝑡)

−
(
𝑮̂𝑘(𝜃)𝜕𝑠𝑿, 𝜕𝑠𝝎

)
Γ(𝑡)

= 0, ∀𝝎 ∈ [𝐻1
𝑝
(𝕀)]2. (3.7b)

It can be demonstrated that the weak formulation (3.7) maintains two geometric properties, namely, area conservation and energy 
dissipation.

Proposition 3.1 (Area conservation and energy dissipation). Suppose Γ(𝑡) is given by the solution (𝑿(⋅, 𝑡), 𝜇(⋅, 𝑡)) of the weak formulation 
(3.7), denote 𝐴𝑐(𝑡) as the enclosed area and 𝑊𝑐(𝑡) as the total energy of the closed evolving curve Γ(𝑡), respectively, which are formally given 
by

𝐴𝑐(𝑡) ∶= ∫
Γ(𝑡)

𝑦(𝑠, 𝑡)𝜕𝑠𝑥(𝑠, 𝑡) d𝑠, 𝑊𝑐(𝑡) ∶= ∫
Γ(𝑡)

𝛾̂(𝜃) d𝑠. (3.8)

Then we have

𝐴𝑐(𝑡) ≡𝐴𝑐(0), 𝑊𝑐(𝑡) ≤𝑊𝑐(𝑡1) ≤𝑊𝑐(0), ∀𝑡 ≥ 𝑡1 ≥ 0. (3.9)

More precisely,

d
d𝑡

𝐴𝑐(𝑡) = 0, d
d𝑡

𝑊𝑐(𝑡) = −∫
Γ(𝑡)

|𝜕𝑠𝜇|2 d𝑠 ≤ 0, 𝑡 ≥ 0. (3.10)

To prove the above theorem, we first introduce the following transport lemma:

Lemma 3.1. Suppose Γ(𝑡) is a two-dimensional piecewise 𝐶1 curve parameterized by 𝑿(𝜌, 𝑡), 𝑓 ∶ Γ(𝑡) ×ℝ+ →ℝ is a differentiable function, 
then

d
d𝑡 ∫

Γ(𝑡)

𝑓 d𝑠 = ∫
Γ(𝑡)

𝜕𝑡𝑓 + 𝑓𝜕𝑠(𝜕𝑡𝑿) ⋅ 𝜕𝑠𝑿 d𝑠. (3.11)

Proof. Since |𝜕𝜌𝑿| =√(𝜕𝜌𝑥)2 + (𝜕𝜌𝑦)2, then

𝜕𝑡|𝜕𝜌𝑿| = 𝜕𝜌𝑥𝜕𝑡(𝜕𝜌𝑥) + 𝜕𝜌𝑦𝜕𝑡(𝜕𝜌𝑦)√
(𝜕𝜌𝑥)2 + (𝜕𝜌𝑦)2

=
𝜕𝜌𝑿|𝜕𝜌𝑿| ⋅ 𝜕𝜌(𝜕𝑡𝑿)|𝜕𝜌𝑿| |𝜕𝜌𝑿|

= 𝜕𝑠𝑿 ⋅ 𝜕𝑠(𝜕𝑡𝑿)|𝜕𝜌𝑿|,
(3.12)

thus

d
d𝑡 ∫

Γ(𝑡)

𝑓 d𝑠 = d
d𝑡

1

∫
0

𝑓 |𝜕𝜌𝑿|d𝜌
=

1

𝜕𝑡𝑓 |𝜕𝜌𝑿|+ 𝑓𝜕𝑡|𝜕𝜌𝑿|d𝜌

6

∫
0
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=

1

∫
0

𝜕𝑡𝑓 |𝜕𝜌𝑿|+ 𝑓𝜕𝑠(𝜕𝑡𝑿) ⋅ 𝜕𝑠𝑿|𝜕𝜌𝑿|d𝜌 (3.13)

= ∫
Γ(𝑡)

𝜕𝑡𝑓 + 𝑓𝜕𝑠(𝜕𝑡𝑿) ⋅ 𝜕𝑠𝑿 d𝑠. □

Now the proof of Proposition 3.1 is ready to be presented:

Proof. Denote the region enclosed by Γ(𝑡) as Ω(𝑡). For the area conservation, by the Reynolds’ transport theorem [41] and taking 
𝜑 ≡ 1 in (3.7a),

d
d𝑡

𝐴𝑐(𝑡) =
d
d𝑡 ∫

Ω(𝑡)

1 d𝑥d𝑦 = ∫
Γ(𝑡)

𝒏 ⋅ 𝜕𝑡𝑿 d𝑠

=
(
𝒏 ⋅ 𝜕𝑡𝑿,1

)
Γ(𝑡)

= −
(
𝜕𝑠𝜇, 𝜕𝑠1

)
Γ(𝑡)

= 0.

(3.14)

For the energy dissipation part, by Lemma 3.1, we have

d
d𝑡

𝑊𝑐(𝑡) = ∫
Γ(𝑡)

𝜕𝑡𝛾̂(𝜃) + 𝛾̂(𝜃)𝜕𝑠(𝜕𝑡𝑿) ⋅ 𝜕𝑠𝑿 d𝑠

= ∫
Γ(𝑡)

𝛾̂ ′(𝜃)𝜕𝑡𝜃 + 𝛾̂(𝜃)𝜕𝑠(𝜕𝑡𝑿) ⋅ 𝜕𝑠𝑿 d𝑠.
(3.15)

On the other hand, by using (3.12), we can simplify 𝜕𝑠(𝜕𝑡𝑿) as

𝜕𝑠(𝜕𝑡𝑿) = 1|𝜕𝜌𝑿| 𝜕𝜌(𝜕𝑡𝑿)

= 1|𝜕𝜌𝑿| 𝜕𝑡 (|𝜕𝜌𝑿|(cos𝜃, sin𝜃)𝑇 ) (3.16)

= 1|𝜕𝜌𝑿| (𝜕𝑠𝑿 ⋅ 𝜕𝑠(𝜕𝑡𝑿)|𝜕𝜌𝑿|(cos𝜃, sin𝜃)𝑇 + |𝜕𝜌𝑿|(− sin𝜃, cos𝜃)𝑇 𝜕𝑡𝜃
)

This, together with the fact 𝜕𝑠𝑿⟂ = (sin𝜃, − cos𝜃)𝑇 , yields that

𝜕𝑡𝜃 = −𝜕𝑠(𝜕𝑡𝑿) ⋅ 𝜕𝑠𝑿⟂. (3.17)

Therefore,

d
d𝑡

𝑊𝑐(𝑡) = ∫
Γ(𝑡)

[
𝛾̂(𝜃)𝜕𝑠𝑿 − 𝛾̂ ′(𝜃)𝜕𝑠𝑿⟂] ⋅ 𝜕𝑠(𝜕𝑡𝑿) d𝑠. (3.18)

Since 𝒏𝑇 𝜕𝑠𝑿 ≡ 0, then

𝛾̂(𝜃)𝜕𝑠𝑿 − 𝛾̂ ′(𝜃)𝜕𝑠𝑿⟂ = 𝛾̂(𝜃)𝜕𝑠𝑿 − 𝛾̂ ′(𝜃)𝜕𝑠𝑿⟂ + 𝑘(𝜃)𝒏𝒏𝑇 𝜕𝑠𝑿

= 𝑮̂𝑘(𝜃)𝜕𝑠𝑿
(3.19)

which leads to

d
d𝑡

𝑊𝑐(𝑡) = ∫
Γ(𝑡)

𝑮̂𝑘(𝜃)𝜕𝑠𝑿 ⋅ 𝜕𝑠(𝜕𝑡𝑿) d𝑠. (3.20)

Therefore, by taking 𝜑 = 𝜇 and 𝝎 = 𝜕𝑡𝑿 in (3.7a) and (3.7b), respectively, we have

d
d𝑡

𝑊𝑐(𝑡) =
(
𝑮̂𝑘(𝜃)𝜕𝑠𝑿, 𝜕𝑠(𝜕𝑡𝑿)

)
Γ(𝑡)( ) ( ) (3.21)
7

= 𝜇𝒏, 𝜕𝑡𝑿 Γ(𝑡)
= − 𝜕𝑠𝜇, 𝜕𝑠𝜇 Γ(𝑡)

≤ 0. □
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3.2. A semi-discretization in space

To obtain the spatial discretization, let 𝑁 > 2 be a positive integer and ℎ = 1∕𝑁 be the mesh size, grid points 𝜌𝑗 = 𝑗ℎ, sub-intervals 
𝐼𝑗 = [𝜌𝑗−1, 𝜌𝑗 ] for 𝑗 = 1, 2, ⋯ , 𝑁 and the uniform partition 𝕀 = [0, 1] = ∪𝑁

𝑗=1𝐼𝑗 . The closed curve Γ(𝑡) =𝑿(⋅, 𝑡) is approximated by the 

polygonal curve Γℎ(𝑡) =𝑿
ℎ(⋅, 𝑡) =

(
𝑥ℎ(⋅, 𝑡), 𝑦ℎ(⋅, 𝑡)

)𝑇
satisfying 𝑿ℎ(𝜌𝑗 , 0) =𝑿(𝜌𝑗 , 0).

The polygon Γℎ(𝑡) is composed of ordered line segments {𝒉𝑗 (𝑡)}𝑁𝑗=1, i.e.

Γℎ(𝑡) =
𝑁⋃
𝑗=1

𝒉𝑗 (𝑡) with 𝒉𝑗 (𝑡) = (ℎ𝑗,𝑥, ℎ𝑗,𝑦)𝑇 ∶=𝑿
ℎ(𝜌𝑗 , 𝑡) −𝑿

ℎ(𝜌𝑗−1, 𝑡). (3.22)

And we always assume that ℎmin(𝑡) = min
1≤𝑗≤𝑁 |𝒉𝑗 (𝑡)| > 0 for all 𝑡 > 0.

By using 𝒉𝑗 , the discrete geometric quantities such as the unit tangential vector 𝝉ℎ, the outward unit normal vector 𝒏ℎ and the 
inclination angle 𝜃ℎ can be computed on each segment as:

𝝉
ℎ|𝐼𝑗 = 𝒉𝑗|𝒉𝑗 | ∶= 𝝉

ℎ
𝑗
, 𝒏

ℎ|𝐼𝑖 = −(𝝉ℎ
𝑗
)⟂ = −

(𝒉𝑗 )⟂|𝒉𝑗 | ∶= 𝒏
ℎ
𝑗
; (3.23)

and

𝜃ℎ|𝐼𝑗 ∶= 𝜃ℎ
𝑗
, satisfying cos𝜃ℎ

𝑗
=

ℎ𝑗,𝑥|𝒉𝑗 | , sin𝜃ℎ
𝑗
=

ℎ𝑗,𝑦|𝒉𝑗 | . (3.24)

We introduce the finite element subspaces

𝕂ℎ ∶=
{
𝑢ℎ ∈ 𝐶(𝕀) ∣ 𝑢ℎ|𝐼𝑗 ∈ 1(𝐼𝑗 ), ∀𝑗 = 1,2,⋯ ,𝑁

}
⊆𝐻1(𝕀), (3.25a)

𝕂ℎ
𝑝
∶= {𝑢ℎ ∈𝕂ℎ ∣ 𝑢ℎ(0) = 𝑢ℎ(1)}, 𝕏ℎ

𝑝
∶= [𝐻1

𝑝
(𝕀)]2, (3.25b)

where 1(𝐼𝑗 ) is the set of polynomials defined on 𝐼𝑗 of degree ≤ 1. For 𝑢, 𝑣 ∈ 𝕂ℎ, the mass-lumped inner product 
(
⋅, ⋅
)ℎ
Γℎ(𝑡)

with 

respect to Γℎ(𝑡) is defined as(
𝑢, 𝑣

)ℎ
Γℎ(𝑡)

∶= 1
2

𝑁∑
𝑗=1
|𝒉𝑗 (𝑡)| ((𝑢 ⋅ 𝑣)(𝜌+𝑗−1) + (𝑢 ⋅ 𝑣)(𝜌−

𝑗
)
)
, (3.26)

where 𝑢(𝜌±
𝑗
) = lim

𝜌→𝜌±
𝑗

𝑢(𝜌). And the discretized differential operator 𝜕𝑠 for 𝑓 ∈𝕂ℎ is defined as

𝜕𝑠𝑓 |𝐼𝑗 ∶= 𝑓 (𝜌𝑗 ) − 𝑓 (𝜌𝑗−1)|𝒉𝑗 | . (3.27)

The above definitions also hold true for vector-valued functions.

We now propose the spatial semi-discretization for (3.7) as follows: Let Γℎ
0 ∶=𝑿

ℎ(⋅, 0) ∈𝕏ℎ
𝑝
, 𝜇(⋅) ∈ 𝕂ℎ

𝑝
be the approximations of 

Γ0 ∶=𝑿0(⋅), 𝜇0(⋅), respectively, for 𝑡 > 0, find the solution 
(
𝑿

ℎ(⋅, 𝑡), 𝜇ℎ(⋅)
)
∈𝕏ℎ

𝑝
×𝕂ℎ

𝑝
such that(

𝒏
ℎ ⋅ 𝜕𝑡𝑿

ℎ,𝜑ℎ
)ℎ
Γℎ(𝑡)

+
(
𝜕𝑠𝜇

ℎ, 𝜕𝑠𝜑
ℎ
)ℎ
Γℎ(𝑡)

= 0, ∀𝜑ℎ ∈𝕂ℎ
𝑝
, (3.28a)(

𝜇ℎ
𝒏
ℎ,𝝎ℎ

)ℎ
Γℎ(𝑡)

−
(
𝑮̂𝑘(𝜃ℎ)𝜕𝑠𝑿ℎ, 𝜕𝑠𝝎

ℎ
)ℎ
Γℎ(𝑡)

= 0, ∀𝝎ℎ ∈𝕏ℎ
𝑝
, (3.28b)

where

𝑮̂𝑘(𝜃ℎ) =
(

𝛾̂(𝜃ℎ) −𝛾̂ ′(𝜃ℎ)
𝛾̂ ′(𝜃ℎ) 𝛾̂(𝜃ℎ)

)
+ 𝑘(𝜃ℎ)

(
sin2 𝜃ℎ −cos𝜃ℎ sin𝜃ℎ

−cos𝜃ℎ sin𝜃ℎ cos2 𝜃ℎ

)
. (3.29)

Denote the enclosed area and the free energy of the polygonal curve Γℎ(𝑡) as 𝐴ℎ
𝑐
(𝑡) and 𝑊 ℎ

𝑐
(𝑡), respectively, which are given by

𝐴ℎ
𝑐
(𝑡) = 1

2

𝑁∑
𝑗=1

(𝑥ℎ
𝑗
(𝑡) − 𝑥ℎ

𝑗−1(𝑡))(𝑦
ℎ
𝑗
(𝑡) + 𝑦ℎ

𝑗−1(𝑡)), (3.30a)

𝑊 ℎ
𝑐
(𝑡) =

𝑁∑
𝑗=1
|𝒉𝑗 (𝑡)|𝛾̂(𝜃ℎ𝑗 ), (3.30b)
8

where 𝑥ℎ
𝑗
(𝑡) ∶= 𝑥ℎ(𝜌𝑗 , 𝑡), 𝑦ℎ𝑗 (𝑡) ∶= 𝑦ℎ(𝜌𝑗 , 𝑡), ∀0 ≤ 𝑗 ≤𝑁 .
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Following similar steps in Proposition 3.1, it can be proved that the two geometric properties for the semi-discretization (3.28)

still preserve:

Proposition 3.2 (Area conservation and energy dissipation). Suppose Γℎ(𝑡) is given by the solution (𝑿ℎ(⋅, 𝑡), 𝜇ℎ(⋅, 𝑡)) of (3.28), then we have

𝐴ℎ
𝑐
(𝑡) ≡𝐴ℎ

𝑐
(0), 𝑊 ℎ

𝑐
(𝑡) ≤𝑊 ℎ

𝑐
(𝑡1) ≤𝑊 ℎ

𝑐
(0), ∀𝑡 ≥ 𝑡1 ≥ 0. (3.31)

3.3. A structure-preserving SPFEM discretization

Let 𝜏 be the uniform time step. Denoting the approximation of Γ(𝑡) = 𝑿(⋅, 𝑡) at 𝑡𝑚 = 𝑚𝜏, 𝑚 = 0, 1, ⋯, as Γ𝑚 = 𝑿
𝑚(⋅) = ∪𝑁

𝑗=1𝒉
𝑚
𝑗

where 𝒉𝑚
𝑗
∶=𝑿

𝑚(𝜌𝑗 ) −𝑿
𝑚(𝜌𝑗−1). Then the definitions of the mass lumped inner product (⋅, ⋅)ℎΓ𝑚 , the unit tangential vector 𝝉𝑚, the 

unit outward normal vector 𝒏𝑚, and the inclination angle 𝜃𝑚 with respect to Γ𝑚 can be given in a similar approach.

Following the ideas in [3,5,11,34] to design an SP-PFEM for surface diffusion, we utilize the explicit-implicit Euler method in 
time. The derived fully-implicit structure-preserving discretization of SPFEM for the anisotropic surface diffusion (2.1) is expressed 
as follows:

Suppose the initial approximation Γ0(⋅) ∈ 𝕏ℎ is given by 𝑿0(𝜌𝑗 ) =𝑿0(𝜌𝑗 ), ∀0 ≤ 𝑗 ≤ 𝑁 . For any 𝑚 = 0, 1, 2, …, find the solution 
(𝑿𝑚+1(⋅) = (𝑥𝑚+1(⋅), 𝑦𝑚+1(⋅))𝑇 , 𝜇𝑚+1(⋅)) ∈𝕏ℎ

𝑝
×𝕂ℎ

𝑝
such that(

𝒏
𝑚+ 1

2 ⋅
𝑿

𝑚+1 −𝑿
𝑚

𝜏
,𝜑ℎ
)ℎ
Γ𝑚

+
(
𝜕𝑠𝜇

𝑚+1, 𝜕𝑠𝜑
ℎ
)ℎ
Γ𝑚

= 0, ∀𝜑ℎ ∈𝕂ℎ
𝑝
, (3.32a)(

𝜇𝑚+1
𝒏
𝑚+ 1

2 ,𝝎ℎ
)ℎ
Γ𝑚

−
(
𝑮̂𝑘(𝜃𝑚)𝜕𝑠𝑿𝑚+1, 𝜕𝑠𝝎

ℎ
)ℎ
Γ𝑚

= 0, ∀𝝎ℎ ∈𝕏ℎ
𝑝
, (3.32b)

where

𝑮̂𝑘(𝜃𝑚) =
(

𝛾̂(𝜃𝑚) −𝛾̂ ′(𝜃𝑚)
𝛾̂ ′(𝜃𝑚) 𝛾̂(𝜃𝑚)

)
+ 𝑘(𝜃𝑚)

(
sin2 𝜃𝑚 −cos𝜃𝑚 sin𝜃𝑚

−cos𝜃𝑚 sin𝜃𝑚 cos2 𝜃𝑚

)
, (3.33)

and

𝒏
𝑚+ 1

2 ∶= −1
2

1|𝜕𝜌𝑿𝑚| (𝜕𝜌𝑿𝑚 + 𝜕𝜌𝑿
𝑚+1)⟂. (3.34)

Remark 3.1. The above scheme is weakly implicit, as the integral domain is explicitly chosen and each equation contains only one 
non-linear term. The nonlinear term is a polynomial function of degree ≤ 2 with respect to the components of 𝑿𝑚+1 and 𝜇𝑚+1, thus 
it can be efficiently and accurately solved by the Newton’s iterative method similar to [11].

Remark 3.2. The choice of 𝒏𝑚+ 1
2 is crucial for maintaining the area conservation. The scheme becomes semi-implicit if 𝒏𝑚+ 1

2 is 
replaced by 𝒏𝑚, and only the energy dissipation property is preserved.

3.4. Main results

Denote the enclosed area and the free energy of the polygon Γ𝑚 as 𝐴𝑚
𝑐

and 𝑊 𝑚
𝑐

, respectively, which are given by

𝐴𝑚
𝑐
= 1

2

𝑁∑
𝑗=1

(
𝑥𝑚(𝜌𝑗 ) − 𝑥𝑚(𝜌𝑗−1)

)(
𝑦𝑚(𝜌𝑗 ) + 𝑦𝑚(𝜌𝑗−1)

)
, (3.35a)

𝑊 𝑚
𝑐

=
𝑁∑
𝑗=1
|𝒉𝑚

𝑗
|𝛾̂(𝜃𝑚

𝑗
). (3.35b)

In practical applications, it’s common to encounter situations where 𝛾̂(𝜃) lacks high regularity. In the following sections, we always 
assume that 𝛾̂(𝜃) is globally 𝐶1 and piecewise 𝐶2 on 2𝜋𝕋 .

We thus introduce the following energy stable conditions on 𝛾̂(𝜃):

Definition 3.1 (Energy stable condition). Suppose 𝛾̂(𝜃) is globally 𝐶1 and piecewise 𝐶2, the energy stable conditions on 𝛾̂(𝜃) are given 
as follows:

3𝛾̂(𝜃) ≥ 𝛾̂(𝜃 − 𝜋), ∀𝜃 ∈ 2𝜋𝕋 , (3.36a)

𝛾̂ ′(𝜃∗) = 0, when 3𝛾̂(𝜃∗) = 𝛾̂(𝜃∗ − 𝜋), 𝜃∗ ∈ 2𝜋𝕋 . (3.36b)
9

The main result of this work is the following structure-preserving property of the SPFEM (3.32):



Journal of Computational Physics 523 (2025) 113605Y. Zhang, Y. Li and W. Ying

Theorem 3.1 (Structure-preserving). For any 𝛾̂(𝜃) satisfying (3.36), the SPFEM (3.32) is area conservative and unconditional energy dissi-

pative with sufficiently large 𝑘(𝜃), i.e.

𝐴𝑚+1
𝑐

=𝐴𝑚
𝑐
=⋯ =𝐴0

𝑐
, 𝑊 𝑚+1

𝑐
≤𝑊 𝑚

𝑐
≤⋯ ≤𝑊 0

𝑐
, ∀𝑚 ≥ 0. (3.37)

The proof of area conservation part is analogous to [11, Theorem 2.1], we omit here for brevity. And the energy dissipation will 
be established in the next section.

Remark 3.3. The SPFEM (3.32) is a numerical algorithm designed for the sharp interface model, stabilization techniques for the 
phase-field model, such as convex splitting scheme [27,45], stabilized semi-implicit scheme [19,22], etc, do not apply here. Different 
from these classical stabilization schemes in phase-field methods, the SPFEM (3.32) can maintain the original energy stability, without 
requiring additional correction terms.

Remark 3.4. For the 𝑚-fold anisotropy (1.6): the energy stable condition (3.36) holds when |𝛽| < 1 and |𝛽| ≤ 1
2 for 𝑚 being even and 

odd, respectively. It is a significant improvement compared to the energy stable condition |𝛽| ≤ 1
𝑚2+1 in [36].

Remark 3.5. For the ellipsoidal anisotropy (1.7): the energy stable condition in [36] requires − 𝑎

2 ≤ 𝑏 ≤ 𝑎; while condition (3.36) is 
satisfied for any 𝑎 > 0, 𝑎 + 𝑏 > 0.

Remark 3.6. It is noteworthy that for any symmetric anisotropy 𝛾̂(𝜃) satisfying 𝛾̂(𝜃) = 𝛾̂(𝜃 − 𝜋), ∀𝜃 ∈ 2𝜋𝕋 , such as the Riemannian-

like metric anisotropy (1.8), condition (3.36) naturally holds. Thereby it ensures the unconditional energy stability of the SPFEM 
(3.32).

4. Unconditionally energy stability of the SPFEM

The key point in proving energy dissipation of (3.32) is to establish an energy estimate akin to(
𝑮̂𝑘(𝜃𝑚)𝜕𝑠𝑿𝑚+1, 𝜕𝑠(𝑿𝑚+1 −𝑿

𝑚)
)ℎ
Γ𝑚 ≥𝑊 𝑚+1

𝑐
−𝑊 𝑚

𝑐
, (4.1)

for controlling the energy difference between two subsequent time steps with the surface energy matrix 𝑮𝑘. To achieve desired 
inequality, we need a local version of the estimate, which is formulated by the following lemma:

Lemma 4.1 (Local energy estimate). Suppose 𝒉, ̂𝒉 are two non-zero vectors in ℝ2. Let 𝒏 = − 𝒉
⟂|𝒉| = (− sin𝜃, cos𝜃)𝑇 and 𝒏̂ = − 𝒉̂

⟂|𝒉̂| =
(− sin 𝜃̂, cos 𝜃̂)𝑇 be the corresponding unit normal vectors. Then for sufficiently large 𝑘(𝜃), the following inequality holds

1|𝒉| (𝑮̂𝑘(𝜃)𝒉̂
)
⋅ (𝒉̂− 𝒉) ≥ |𝒉̂|𝛾̂(𝜃̂) − |𝒉|𝛾̂(𝜃). (4.2)

Remark 4.1. It is noteworthy to mention that the condition (3.36) is almost sufficient to the local energy estimate. Let 𝒉̂ = −𝒉 and 
𝜃̂ = 𝜃−𝜋. Consequently, the inequality (4.2) becomes 2|𝒉|𝛾̂(𝜃) ≥ |𝒉|𝛾̂(𝜃−𝜋) − |𝒉|𝛾̂(𝜃). Therefore, our energy stability condition (3.36)

proves to be almost essential for the local energy estimate.

4.1. The minimal stabilizing function and its properties

To prove the local energy estimate (4.2), the following two auxiliary functions are introduced as:

𝑃𝛼(𝜙,𝜃) ∶= 2
√

𝛾̂2(𝜃) + 𝛼𝛾̂(𝜃) sin2 𝜙, ∀𝜙 ∈ 2𝜋𝕋 , (4.3a)

𝑄(𝜙,𝜃) ∶= 𝛾̂(𝜃 −𝜙) + 𝛾̂(𝜃) cos𝜙+ 𝛾̂ ′(𝜃) sin𝜙, ∀𝜙 ∈ 2𝜋𝕋 . (4.3b)

With the help of 𝑃𝛼, 𝑄, we present the definition of minimal stabilizing function as follows:

𝑘0(𝜃) ∶= inf
{
𝛼 ≥ 0 ∣ 𝑃𝛼(𝜙,𝜃) −𝑄(𝜙,𝜃) ≥ 0, ∀𝜙 ∈ 2𝜋𝕋

}
. (4.4)

We note that the function 𝑘0(𝜃) is determined by 𝛾̂(𝜃), making it time-independent. In numerical experiments, this allows 𝑘0(𝜃) to be 
pre-allocated for efficiency.

The following theorem guarantees the existence of 𝑘0(𝜃):
10

Theorem 4.1. For 𝛾̂(𝜃) satisfying (3.36), the minimal stabilizing function 𝑘0(𝜃), as given in (4.4), is well-defined.



Journal of Computational Physics 523 (2025) 113605Y. Zhang, Y. Li and W. Ying

The proof of Theorem 4.1 will be presented in Section 5.

Once the 𝛾̂(𝜃) is given, the minimal stabilizing function 𝑘0(𝜃) is determined, inducing a mapping from 𝛾̂(𝜃) to 𝑘0(𝜃). Moreover, 
this mapping is sublinear, i.e., it is positive homogeneity and subadditivity.

4.2. Proof of the local energy estimate

Proof. Applying the definitions of 𝑮̂𝑘(𝜃) in (2.4), noting that(
sin2 𝜃 −cos𝜃 sin𝜃

−cos𝜃 sin𝜃 cos2 𝜃

)
=
(
−sin𝜃
cos𝜃

)
(− sin𝜃, cos𝜃) = 𝒏𝒏

𝑇 , (4.5)

then we have

1|𝒉| (𝑮̂𝑘(𝜃)𝒉̂
)
⋅ 𝒉̂ = 1|𝒉| [𝛾̂(𝜃)𝐼2 + 𝛾̂ ′(𝜃)𝐽 + 𝑘(𝜃)𝒏𝒏𝑇

]
𝒉̂ ⋅ 𝒉̂

= 1|𝒉| 𝛾̂(𝜃)|𝒉̂|2 + 1|𝒉| 𝛾̂ ′(𝜃)𝐽 𝒉̂ ⋅ 𝒉̂+ 1|𝒉|𝑘(𝜃)(𝒏 ⋅ 𝒉̂)2

= 1|𝒉| 𝛾̂(𝜃)|𝒉̂|2 + 1|𝒉|𝑘(𝜃)(𝒏 ⋅ 𝒉̂)2

= 1|𝒉| [𝛾̂(𝜃) + 𝑘(𝜃) sin2(𝜃 − 𝜃̂)
] |𝒉̂|2,

(4.6)

and

1|𝒉| (𝑮̂𝑘(𝜃)𝒉̂
)
⋅ 𝒉 = 1|𝒉| [𝛾̂(𝜃)𝐼2 + 𝛾̂ ′(𝜃)𝐽 + 𝑘(𝜃)𝒏𝒏𝑇

]
𝒉̂ ⋅ 𝒉

= 1|𝒉| 𝛾̂(𝜃)(𝒉 ⋅ 𝒉̂) + 1|𝒉| 𝛾̂ ′(𝜃)𝐽 𝒉̂ ⋅ 𝒉+ 1|𝒉|𝑘(𝜃)𝒏𝒏𝑇
𝒉̂ ⋅ 𝒉

= |𝒉̂|𝛾̂(𝜃)( cos𝜃
sin𝜃

)
⋅
(
cos 𝜃̂
sin 𝜃̂

)
+ |𝒉̂|𝛾̂ ′(𝜃)( 0 −1

1 0

)(
cos 𝜃̂
sin 𝜃̂

)
⋅
(
cos𝜃
sin𝜃

)
+ |𝒉̂|𝑘(𝜃)( sin2 𝜃 −cos𝜃 sin𝜃

−cos𝜃 sin𝜃 cos2 𝜃

)(
cos 𝜃̂
sin 𝜃̂

)
⋅
(
cos𝜃
sin𝜃

)
= |𝒉̂|𝛾̂(𝜃) cos(𝜃 − 𝜃̂) + |𝒉̂|𝛾̂ ′(𝜃)(− sin 𝜃̂, cos 𝜃̂) ⋅ (cos𝜃, sin𝜃)

= |𝒉̂| [𝛾̂(𝜃) cos(𝜃 − 𝜃̂) + 𝛾̂ ′(𝜃) sin(𝜃 − 𝜃̂)
]
.

(4.7)

Recall the definitions of 𝑃𝛼(𝜙, 𝜃), 𝑄(𝜙, 𝜃) in (4.3), we have

1|𝒉| (𝑮̂𝑘(𝜃)𝒉̂
)
⋅ 𝒉̂ = |𝒉̂|2

4|𝒉|𝛾̂(𝜃)𝑃 2
𝑘(𝜃)(𝜙,𝜃), (4.8a)

1|𝒉| (𝑮̂𝑘(𝜃)𝒉̂
)
⋅ 𝒉 = |𝒉̂|(𝑄(𝜙,𝜃) − 𝛾̂(𝜃 − 𝜙)), (4.8b)

with 𝜙 = 𝜃 − 𝜃̂.

Substituting (4.8a), (4.8b) into the local energy estimate (4.2), we have

1|𝒉| (𝑮̂𝑘(𝜃)𝒉̂
)
⋅ (𝒉̂− 𝒉) −

(|𝒉̂|𝛾̂(𝜃̂) − |𝒉|𝛾̂(𝜃))
= |𝒉̂|2

4|𝒉|𝛾̂(𝜃)𝑃 2
𝑘(𝜃)(𝜙,𝜃) − |𝒉̂|(𝑄(𝜙,𝜃) − 𝛾̂(𝜃 −𝜙))

− |𝒉̂|𝛾̂(𝜃 − 𝜙) + |𝒉|𝛾̂(𝜃)
= 1

4|𝒉|𝛾̂(𝜃) [|𝒉̂|2𝑃 2
𝑘(𝜃)(𝜙,𝜃) − 4|𝒉̂||𝒉|𝛾̂(𝜃)𝑄(𝜙,𝜃) + 4|𝒉|2𝛾̂2(𝜃)] ,

(4.9)

thus the local energy estimate (4.2) is equivalent to

|𝒉̂|2𝑃 2
𝑘(𝜃)(𝜙,𝜃) − 4|𝒉̂||𝒉|𝛾̂(𝜃)𝑄(𝜙,𝜃) + 4|𝒉|2𝛾̂2(𝜃) ≥ 0. (4.10)

i.e. (|𝒉̂|𝑃𝑘(𝜃) − 2|𝒉|𝛾̂(𝜃))2 + 4|𝒉̂||𝒉|𝛾̂(𝜃)(𝑃𝑘(𝜃)(𝜙,𝜃) −𝑄(𝜙,𝜃)
) ≥ 0 (4.11)

By the definition (4.4) of 𝑘0(𝜃), we have 𝑃𝑘(𝜃)(𝜙, 𝜃) −𝑄(𝜙, 𝜃) ≥ 0, ∀𝜙 ∈ 2𝜋𝕋 for any 𝑘(𝜃) ≥ 𝑘0(𝜃), thus (4.11) holds true. By Theo-

rem 4.1, the minimal stabilizing function 𝑘0(𝜃) < +∞ is well-defined, therefore we can choose sufficiently large 𝑘(𝜃) ≥ 𝑘0(𝜃) such 
11

that the intended local energy estimate (4.2) is validated. □
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4.3. Proof of the main result

Leveraging the local energy estimate (4.2) as outlined in Lemma 4.1, we can now prove the unconditional energy stability aspect 
of the main result, as stated in Theorem 3.1.

Proof. Suppose 𝑘(𝜃) is sufficiently large such that 𝑘(𝜃) ≥ 𝑘0(𝜃). We take 𝒉 = 𝒉
𝑚
𝑗
, ̂𝒉 = 𝒉

𝑚+1
𝑗

in the local energy estimate (4.2):

1|𝒉𝑚
𝑗
| (𝑮̂𝑘(𝜃𝑚𝑗 )𝒉

𝑚+1
𝑗

)
⋅ (𝒉𝑚+1

𝑗
− 𝒉

𝑚
𝑗
) ≥ |𝒉𝑚+1

𝑗
|𝛾̂(𝜃𝑚+1

𝑗
) − |𝒉𝑚

𝑗
|𝛾̂(𝜃𝑚

𝑗
). (4.12)

Therefore, for any 𝑚 ≥ 0,

(
𝑮̂𝑘(𝜃𝑚)𝜕𝑠𝑿𝑚+1, 𝜕𝑠(𝑿𝑚+1 −𝑿

𝑚)
)ℎ
Γ𝑚 =

𝑁∑
𝑗=1

[|𝒉𝑚
𝑗
|(𝑮̂𝑘(𝜃𝑚𝑗 )

𝒉
𝑚+1
𝑗|𝒉𝑚
𝑗
|
)

⋅
𝒉
𝑚+1
𝑗

− 𝒉
𝑚
𝑗|𝒉𝑚

𝑗
|

]

=
𝑁∑
𝑗=1

[
1|𝒉𝑚
𝑗
| (𝑮̂𝑘(𝜃𝑚𝑗 )𝒉

𝑚+1
𝑗

)
⋅ (𝒉𝑚+1

𝑗
− 𝒉

𝑚
𝑗
)

]

≥
𝑁∑
𝑗=1

[|𝒉𝑚+1
𝑗
|𝛾̂(𝜃𝑚+1

𝑗
) − |𝒉𝑚

𝑗
|𝛾̂(𝜃𝑚

𝑗
)
]

=
𝑁∑
𝑗=1
|𝒉𝑚+1

𝑗
|𝛾̂(𝜃𝑚+1

𝑗
) −

𝑁∑
𝑗=1
|𝒉𝑚

𝑗
|𝛾̂(𝜃𝑚

𝑗
)

=𝑊 𝑚+1
𝑐

−𝑊 𝑚
𝑐
.

(4.13)

Taking 𝜑ℎ = 𝜇𝑚+1, 𝝎ℎ =𝑿
𝑚+1 −𝑿

𝑚 in (3.32), we have(
𝑮̂𝑘(𝜃𝑚)𝜕𝑠𝑿𝑚+1, 𝜕𝑠(𝑿𝑚+1 −𝑿

𝑚)
)ℎ
Γ𝑚

=
(
𝜇𝑚+1

𝒏
𝑚+ 1

2 ,𝑿𝑚+1 −𝑿
𝑚
)ℎ
Γ𝑚

= −𝜏
(
𝜕𝑠𝜇

𝑚+1, 𝜕𝑠𝜇
𝑚+1
)ℎ
Γ𝑚

.

(4.14)

Combining this with (4.13) yields that

𝑊 𝑚+1
𝑐

−𝑊 𝑚
𝑐

≤ (𝑮̂𝑘(𝜃𝑚)𝜕𝑠𝑿𝑚+1, 𝜕𝑠(𝑿𝑚+1 −𝑿
𝑚)
)ℎ
Γ𝑚

≤ −𝜏
(
𝜕𝑠𝜇

𝑚+1, 𝜕𝑠𝜇
𝑚+1)ℎ

Γ𝑚

≤ 0, ∀𝑚 ≥ 0,

(4.15)

which immediately implies the unconditional energy stability in (3.37). □

5. Existence of the minimal stabilizing function

In this section, we present a proof of the existence of the minimal stabilizing function corresponding to 𝛾̂ (𝜃) that satisfies the 
energy stable condition in (3.36).

Recall the definition (4.3) of 𝑃𝛼, 𝑄, denote

𝐹𝛼(𝜙,𝜃) ∶= 𝑃 2
𝛼
(𝜙,𝜃) −𝑄2(𝜙,𝜃)

= 4𝛾̂(𝜃)
(
𝛾̂(𝜃) + 𝛼 sin2 𝜙

)
−
(
𝛾̂(𝜃 −𝜙) + 𝛾̂(𝜃) cos𝜙+ 𝛾̂ ′(𝜃) sin𝜙

)2
.

(5.1)

Suppose 𝐶 > 0 is a positive number such that 1
𝐶
≤ 𝛾̂(𝜃) ≤ 𝐶 and |𝛾̂ ′(𝜃)|, |𝛾̂ ′′(𝜃)| ≤ 𝐶, ∀𝜃 ∈ 2𝜋𝕋 .

Before formally commencing our proof, we first need the following two technical lemmas:

Lemma 5.1. For a globally 𝐶1 and piecewise 𝐶2 anisotropy 𝛾̂(𝜃), there exists an open neighborhood 𝑈0 of 0 and a positive constant 𝑘𝑈0
< +∞

such that for any 𝛼 > 𝑘𝑈0
, we have 𝐹𝛼(𝜙, 𝜃) ≥ 0, ∀𝜙 ∈𝑈0.

Proof. Since 𝛾̂(𝜃) is globally 𝐶1 and piecewise 𝐶2, there exists a 0 < 𝜀 < 𝜋

2 such that 𝛾̂(𝜃) is 2-times continuously differentiable on 
both [𝜃 − 𝜀, 𝜃] and [𝜃, 𝜃 + 𝜀].

Applying the mean value theorem to [𝜃 − 𝜀, 𝜃] and [𝜃, 𝜃 + 𝜀], we deduce that for 𝜙 ∈𝑈0 ∶= {𝜙 ∣ |𝜙| < 𝜀}, there exists a 𝜉 between 
𝜃 and 𝜃 − 𝜙 such that

𝛾̂ ′′(𝜉)
12

𝛾̂(𝜃 − 𝜙) = 𝛾̂(𝜃) − 𝛾̂ ′(𝜃)𝜙+
2

𝜙2. (5.2)
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Again, by the mean value theorem, there exist 𝜉1, 𝜉2 between 0, 𝜙 such that

cos𝜙 = 1 − 1
2
𝜙2 +

sin 𝜉1
6

𝜙3 (5.3a)

sin𝜙 = 𝜙−
cos 𝜉2
6

𝜙3. (5.3b)

Substituting (5.2) and (5.3) into 2𝛾̂(𝜃) −𝑄(𝜙, 𝜃), we have

2𝛾̂(𝜃) −𝑄(𝜙,𝜃) = 2𝛾̂(𝜃) − 𝛾̂(𝜃) + 𝛾̂ ′(𝜃)𝜙− 1
2
𝛾̂ ′′(𝜉)𝜙2

− 𝛾̂(𝜃) + 1
2
𝛾̂(𝜃)𝜙2 − 1

6
𝛾̂(𝜃) sin 𝜉1𝜙3

− 𝛾̂ ′(𝜃)𝜙+ 1
6
𝛾̂ ′(𝜃) cos 𝜉2𝜙3

= 1
2
(
𝛾̂(𝜃) − 𝛾̂ ′′(𝜉)

)
𝜙2 − 1

6
(
𝛾̂(𝜃) sin 𝜉1 − 𝛾̂ ′(𝜃) cos 𝜉2

)
𝜙3.

(5.4)

Thus,

|2𝛾̂(𝜃) −𝑄(𝜙,𝜃)| ≤ 1
2
(|𝛾̂(𝜃)|+ |𝛾̂ ′′(𝜉)|) |𝜙|2

+ 1
6
(|𝛾̂(𝜃) sin 𝜉1|+ |𝛾̂ ′(𝜃) cos 𝜉2|) |𝜙|3

≤ 𝐶|𝜙|2 + 𝐶

3
|𝜙|3.

(5.5)

Since |2𝛾̂(𝜃) +𝑄(𝜙, 𝜃)| ≤ 2|𝛾̂(𝜃)| + |𝑄(𝜙, 𝜃)| ≤ 5𝐶 , then for any 𝜙 ∈𝑈0,

|4𝛾̂2(𝜃) −𝑄2(𝜙,𝜃)| ≤ |2𝛾̂(𝜃) +𝑄(𝜙,𝜃)||2𝛾̂(𝜃) −𝑄(𝜙,𝜃)|
≤ 5𝐶

(
𝐶|𝜙|2 + 𝐶

3
|𝜙|3)

= 5𝐶2

3
(3 + |𝜙|) |𝜙|2

≤ 5(6 + 𝜋)𝐶2

6
|𝜙|2.

(5.6)

Noting that for any 𝜙 ∈ 𝑈0, we have | sin𝜙| > 2
𝜋
|𝜙|, therefore,

𝐹𝛼(𝜙,𝜃) = 4𝛾̂(𝜃)𝛼 sin2 𝜙+ 4𝛾̂2(𝜃) −𝑄2(𝜙,𝜃)

≥ 16
𝐶𝜋2 𝛼|𝜙|2 − 5(6 + 𝜋)𝐶2

6
|𝜙|2

≥
[

16
𝐶𝜋2 𝛼 − 5(6 + 𝜋)𝐶2

6

] |𝜙|2, ∀𝜙 ∈𝑈0.

(5.7)

Thus there exists a positive constant 𝑘𝑈0
∶= 5𝜋2(6+𝜋)𝐶3

96 , for 𝛼 > 𝑘𝑈0
, 𝐹𝛼(𝜙, 𝜃) ≥ 0, ∀𝜙 ∈𝑈0. □

Lemma 5.2. Suppose 𝛾̂(𝜃) satisfying (3.36). There exists an open neighborhood 𝑈𝜋 of 𝜋 with a positive 𝑘𝑈𝜋
< +∞ such that for any 𝛼 > 𝑘𝑈𝜋

, 
𝐹𝛼(𝜙, 𝜃) ≥ 0, ∀𝜙 ∈𝑈𝜋 .

Proof. (i) If 3𝛾̂(𝜃) > 𝛾̂(𝜃 − 𝜋) for any 𝜃 ∈ 2𝜋𝕋 , then

𝐹𝛼(𝜋, 𝜃) = (3𝛾̂(𝜃) − 𝛾̂(𝜃 − 𝜋)) (𝛾̂(𝜃) + 𝛾̂(𝜃 − 𝜋)) > 0. (5.8)

Thus, by the continuity of 𝐹𝛼(𝜙, 𝜃), there exists an open neighborhood 𝑈𝜋 of 𝜋 such that 𝐹𝛼(𝜋, 𝜃) ≥ 0, ∀𝜙 ∈𝑈𝜋 .

(ii) If 3𝛾̂(𝜃∗) = 𝛾̂(𝜃∗ − 𝜋) and 𝛾̂ ′(𝜃∗) = 0 at 𝜃∗ ∈ 2𝜋𝕋 . Since function 𝛾(𝜃 − 𝜋)∕𝛾(𝜃) ≤ 3, it attends its maximum at 𝜃∗, thus(
𝛾̂(𝜃 − 𝜋)
𝛾̂(𝜃)

)′|||||𝜃=𝜃∗ = 𝛾̂ ′(𝜃∗ − 𝜋)𝛾̂(𝜃∗) − 𝛾̂(𝜃∗ − 𝜋)𝛾̂ ′(𝜃∗)
𝛾̂2(𝜃∗)

= 𝛾̂ ′(𝜃∗ − 𝜋) − 3𝛾̂ ′(𝜃∗)
𝛾̂(𝜃∗)

= 𝛾̂ ′(𝜃∗ − 𝜋)
𝛾̂(𝜃∗)

= 0,

(5.9)
13

i.e., 𝛾̂ ′(𝜃∗ − 𝜋) = 0.
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Similar to derivations of (5.2), according to the mean value theorem, we know that there exists positive number 0 < 𝜀 < 𝜋

2 and 
a neighborhood 𝑈𝜋 = {𝜙 ∣ |𝜙 − 𝜋| < 𝜀}. Such that for any 𝜙 ∈𝑈𝜋 , there exists a 𝜉 between 𝜃∗ − 𝜙 and 𝜃∗ − 𝜋 satisfying

𝛾̂(𝜃∗ − 𝜙) = 𝛾̂(𝜃∗ − 𝜋) − 𝛾̂ ′(𝜃∗ − 𝜋)(𝜙− 𝜋) + 𝛾̂ ′′(𝜉)
2

(𝜙− 𝜋)2

= 𝛾̂(𝜃∗ − 𝜋) + 𝛾̂ ′′(𝜉)
2

(𝜙− 𝜋)2.
(5.10)

Again, by the mean value theorem, we know that there exists a 𝜉1 between 𝜋, 𝜙,

cos𝜙 = −1 −
cos 𝜉1
6

(𝜙− 𝜋)2. (5.11)

By substituting (5.10) and (5.11) into 2𝛾̂(𝜃∗) −𝑄(𝜙, 𝜃∗), we have

2𝛾̂(𝜃∗) −𝑄(𝜙,𝜃∗) = 2𝛾̂(𝜃∗) − 𝛾̂ ′(𝜃∗ − 𝜋) − 𝛾̂ ′′(𝜉)
2

(𝜙− 𝜋)2

+ 𝛾̂(𝜃∗) +
cos 𝜉1
6

𝛾̂(𝜃)(𝜙− 𝜋)2 + 𝛾̂(𝜃∗) sin𝜙

= 1
6
(
𝛾̂(𝜃∗) cos 𝜉1 − 3𝛾̂ ′′(𝜉)

)
(𝜙− 𝜋)2.

(5.12)

Thus,

|2𝛾̂(𝜃∗) −𝑄(𝜙,𝜃∗)| ≤ 1
6
(|𝛾̂(𝜃∗) cos 𝜉1|+ 3|𝛾̂ ′′(𝜉)|) |𝜙− 𝜋|2

≤ 2𝐶
3
|𝜙− 𝜋|2. (5.13)

Given that |2𝛾̂(𝜃∗) +𝑄(𝜙, 𝜃∗)| ≤ 5𝐶 , we can deduce that

|4𝛾̂2(𝜃∗) −𝑄2(𝜙,𝜃∗)| ≤ |2𝛾̂(𝜃∗) +𝑄(𝜙,𝜃∗)||2𝛾̂(𝜃∗) −𝑄(𝜙,𝜃∗)|
≤ 10𝐶2

3
|𝜙− 𝜋|2. (5.14)

Noting that for any 𝜙 ∈ 𝑈𝜋 , we have | sin𝜙| = | sin(𝜙 − 𝜋)| > 2
𝜋
|𝜙 − 𝜋| since 𝜀 ∈ (0, 𝜋2 ) and |𝜙 − 𝜋| < 𝜋

2 . Therefore,

𝐹𝛼(𝜙,𝜃∗) = 4𝛾̂(𝜃∗)𝛼 sin2 𝜙+ 4𝛾̂2(𝜃∗) −𝑄2(𝜙,𝜃∗)

≥ 16
𝐶𝜋2 𝛼|𝜙− 𝜋|2 − 10𝐶2

3
|𝜙− 𝜋|2

≥
[

16
𝐶𝜋2 𝛼 − 10𝐶2

3

] |𝜙− 𝜋|2, ∀𝜙 ∈𝑈𝜋.

(5.15)

Therefore, there exists a positive constant 𝑘𝑈𝜋
∶= 5𝜋2𝐶3

24 , such that for 𝛼 > 𝑘𝑈𝜋
, we have 𝐹𝛼(𝜙, 𝜃) ≥ 0, ∀𝜙 ∈𝑈𝜋 . □

With the help of above two lemmas, Theorem 4.1 can now be proven:

Proof. (Existence of the minimal stabilizing function)

(i) For any sin𝜙0 ≠ 0, i.e. 𝜙0 ≠ 0, 𝜋, there exists an open neighborhood 𝑈𝜙0
of 𝜙0 such that sin2 𝜙 has a strict positive lower bound 

in 𝑈𝜙0
, i.e. there exists a constant 𝑐 > 0 such that sin2 𝜙 ≥ 𝑐 > 0, ∀𝜙 ∈𝑈𝜙0

, then we have

𝐹𝛼(𝜙,𝜃) = 4𝛾̂(𝜃)𝛼 sin2 𝜙+𝑂(1)

≥ 4𝑐𝛾̂(𝜃)𝛼 +𝑂(1).
(5.16)

Thus there positive exists a constant 𝑘𝑈𝜙0
< +∞, for any 𝛼 > 𝑘𝑈𝜙0

, 𝐹𝛼(𝜙, 𝜃) ≥ 0, ∀𝜙 ∈𝑈𝜙0
.

(ii) For 𝜙0 = 0, by Lemma 5.1, there exists an open neighborhood 𝑈𝜙0
∶= 𝑈0 of 0 and a positive constant 𝑘𝑈𝜙0

∶= 𝑘𝑈0
< +∞ such 

that for any 𝛼 > 𝑘𝑈𝜙0
, 𝐹𝛼(𝜙, 𝜃) ≥ 0, ∀𝜙 ∈𝑈𝜙0

.

(iii) For 𝜙0 = 𝜋, by Lemma 5.2, there also exists an open neighborhood 𝑈𝜙0
∶= 𝑈𝜋 of 𝜋 with a positive constant 𝑘𝑈𝜙0

∶= 𝑘𝑈𝜋
< +∞

such that for any 𝛼 > 𝑘𝑈𝜙0
, 𝐹𝛼(𝜙, 𝜃) ≥ 0, ∀𝜙 ∈𝑈𝜙0

.

Since 2𝜋𝕋 is compact and {𝑈𝜙0
∶ 𝜙0 ∈ 2𝜋𝕋} forms an open cover of 2𝜋𝕋 , by the open cover theorem, one can select a finite 

subcover {𝑈𝑖}𝑀𝑖=1 ⊂ {𝑈𝜙0
∶ 𝜙0 ∈ 2𝜋𝕋}, then for 𝛼 > max

1≤𝑖≤𝑀 𝑘𝑈𝑖
, we have
14

𝐹𝛼(𝜙,𝜃) ≥ 0, ∀𝜙 ∈ 2𝜋𝕋 . (5.17)
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Fig. 2. An illustration of solid-state dewetting of a thin film on a flat rigid substrate in 2D, where 𝛾𝐹𝑉 = 𝛾̂(𝜃), 𝛾𝑉 𝑆 , 𝛾𝐹𝑆 represent surface energy densities of film/vapor, 
vapor/substrate and film/substrate interface, respectively, 𝑥𝑙

𝑐
, 𝑥𝑟

𝑐
are the left and right contact points.

Which implies 𝑘0(𝜃) = inf
{
𝛼 ≥ 0 ∣ 𝑃𝛼(𝜙,𝜃) −𝑄(𝜙,𝜃) ≥ 0, ∀𝜙 ∈ 2𝜋𝕋

}
< +∞. □

6. Extension to solid-state dewetting

In this section, we extend the conservative formulation (2.14) and its SPFEM (3.32) for a closed curve under anisotropic surface 
diffusion to solid-state dewetting in materials science [4,30,49].

6.1. Sharp interface model and a SPFEM

As shown in Fig. 2, the solid-state dewetting problem in 2D is described as evolution of an open curve Γ(𝑡) = 𝑿(𝑠, 𝑡) =
(𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡))𝑇 (0 ≤ 𝑠 ≤𝐿) under anisotropic surface diffusion and contact line migration. Here, 𝑠 and 𝑡 are the arc-length parameter 
and time, respectively, and 𝐿 ∶= 𝐿(𝑡) = |Γ(𝑡)| represents the total length of Γ(𝑡). As it was derived in the literature [4,30,49], a 
dimensionless sharp-interface model for simulating solid-state dewetting of thin films with weakly anisotropic surface energy can be 
formulated as: 𝑿(𝑠, 𝑡) satisfying anisotropic surface diffusion (1.1)-(1.2) with following boundary conditions

1. contact point condition

𝑦(0, 𝑡) = 0, 𝑦(𝐿, 𝑡) = 0, 𝑡 ≥ 0; (6.1)

2. relaxed contact angle condition

d𝑥𝑙
𝑐
(𝑡)

d𝑡
= 𝜂𝑓 (𝜃𝑙

𝑑
;𝜎),

d𝑥𝑟
𝑐
(𝑡)

d𝑡
= −𝜂𝑓 (𝜃𝑟

𝑑
;𝜎), 𝑡 ≥ 0; (6.2)

3. zero-mass flux condition

𝜕𝑠𝜇(0, 𝑡) = 0, 𝜕𝑠𝜇(𝐿, 𝑡) = 0, 𝑡 ≥ 0; (6.3)

where 𝑥𝑙
𝑐
(𝑡) = 𝑥(0, 𝑡) ≤ 𝑥𝑟

𝑐
(𝑡) = 𝑥(𝐿, 𝑡) are the left and right contact points, 𝜃𝑙

𝑑
∶= 𝜃𝑙

𝑑
(𝑡), 𝜃𝑟

𝑑
∶= 𝜃𝑟

𝑑
(𝑡) are the contact angles at each contact 

points, respectively. 𝑓 (𝜃; 𝜎) is defined as

𝑓 (𝜃;𝜎) ∶= 𝛾̂(𝜃) cos𝜃 − 𝛾̂ ′(𝜃) sin𝜃 − 𝜎, 𝜃 ∈ 2𝜋𝕋 . (6.4)

with 𝜎 ∶= cos𝜃𝑌 = 𝛾𝑉 𝑆−𝛾𝐹𝑆

𝛾𝐹𝑉
and 𝜃𝑌 be the isotropic Young contact angle. 0 < 𝜂 < +∞ denotes the contact line mobility [4,30,49].

Introduce the finite element spaces

𝕂ℎ
0 ∶=

{
𝑢ℎ ∈𝕂ℎ ∣ 𝑢ℎ(0) = 𝑢ℎ(1) = 0

}
, 𝕏ℎ ∶=𝕂ℎ ×𝕂ℎ

0 . (6.5)

Similarly to the derivations in [35,36], a structure-preserving discretization of the SPFEM for solid-state dewetting can be stated 
as follows: Suppose the initial approximation Γ0(⋅) ∈ 𝕏ℎ is given by 𝑿0(𝜌𝑗 ) = 𝑿0(𝜌𝑗 ), ∀0 ≤ 𝑗 ≤ 𝑁 . For any 𝑚 = 0, 1, 2, …, find the 
solution (𝑿𝑚+1(⋅) = (𝑥𝑚+1(⋅), 𝑦𝑚+1(⋅))𝑇 , 𝜇𝑚+1(⋅)) ∈𝕏ℎ ×𝕂ℎ, such that(

𝒏
𝑚+ 1

2 ⋅
𝑿

𝑚+1 −𝑿
𝑚

𝜏
,𝜑ℎ
)ℎ
Γ𝑚

+
(
𝜕𝑠𝜇

𝑚+1, 𝜕𝑠𝜑
ℎ
)ℎ
Γ𝑚

= 0, ∀𝜑ℎ ∈𝕂ℎ, (6.6a)

(
𝜇𝑚+1

𝒏
𝑚+ 1

2 ,𝝎ℎ
)ℎ
Γ𝑚

−
(
𝑮̂𝑘(𝜃𝑚)𝜕𝑠𝑿𝑚, 𝜕𝑠𝝎

ℎ
)ℎ
Γ𝑚

− 1
𝜂

[
𝑥𝑚+1
𝑙

− 𝑥𝑚
𝑙

𝜏
𝜔ℎ
1 (0) +

𝑥𝑚+1
𝑟

− 𝑥𝑚
𝑟

𝜏
𝜔ℎ
1 (1)

]
+ 𝜎
[
𝜔ℎ
1 (1) −𝜔ℎ

1 (0)
]
= 0, ∀𝝎ℎ = (𝜔ℎ

1 ,𝜔
ℎ
2 ) ∈𝕏ℎ,

(6.6b)
15

satisfying 𝑥𝑚+1
𝑙

= 𝑥𝑚+1(0) ≤ 𝑥𝑚+1
𝑟

= 𝑥𝑚+1(1). The definition of 𝑮̂𝑘(𝜃𝑚) is similar to (3.34).
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Denote the area 𝐴𝑚
𝑜

enclosed by the open polygonal curve Γ(𝑡) and the substrate and the total surface energy 𝑊 𝑚
𝑜

as

𝐴𝑚
𝑜
∶= 1

2

𝑁∑
𝑗=1

(
𝑥𝑚(𝜌𝑗 ) − 𝑥𝑚(𝜌𝑗−1)

)(
𝑦𝑚(𝜌𝑗 ) + 𝑦𝑚(𝜌𝑗−1)

)
, (6.7a)

𝑊 𝑚
𝑜

∶=
𝑁∑
𝑗=1
|𝒉𝑚

𝑗
|𝛾̂(𝜃𝑚

𝑗
) − 𝜎

(
𝑥𝑚
𝑟
− 𝑥𝑚

𝑙

)
. (6.7b)

Then for the SPFEM (6.6), we have following result.

Theorem 6.1 (Structure-preserving). For any 𝛾̂(𝜃) satisfying (3.36), the SPFEM (6.6) is area conservative and unconditional energy dissipative 
with sufficiently large 𝑘(𝜃), i.e.

𝐴𝑚+1
𝑜

=𝐴𝑚
𝑜
=⋯ =𝐴0

𝑜
, 𝑊 𝑚+1

𝑜
≤𝑊 𝑚

𝑜
≤⋯ ≤𝑊 0

𝑜
, ∀𝑚 ≥ 0. (6.8)

The proof is similar to Theorem 3.1 or [35, Proposition 5.4], [10, Theorem 3.2]. We omit the details here for brevity.

Remark 6.1. Due to the local energy estimate (4.2) being only dependent on 𝛾̂(𝜃), all results concerning the energy dissipation of 
the SPFEM (3.32) on evolutions of closed curves can be extended to the SPFEM (6.6) on evolutions of open curves in solid-state 
dewetting, including Remark 3.4 – 3.6.

7. Numerical results

In this section, we report numerical experiments for the proposed SPFEM (3.32) and (6.6) for time evolutions of closed curves and 
open curves, respectively. Extensive results are provided to illustrate their efficiency, accuracy, area conservation and unconditional 
energy stability.

In the numerical tests, following typical anisotropic surface energies are considered in the simulations:

• Case I: 𝛾̂(𝜃) = 1 + 𝛽 cos3𝜃 with |𝛽| < 1. It is weakly anisotropic when |𝛽| < 1
8 and strongly anisotropic otherwise;

• Case II: 𝛾̂(𝜃) =
√
1 + 𝑏 cos2 𝜃 with 𝑏 > −1.

To compute the minimal stabilizing function 𝑘0(𝜃), we solve the optimization problem (4.4) for 20 uniformly distributed points 
𝜃𝑗 = −𝜋 + 𝑗𝜋

10 , ∀1 ≤ 𝑗 ≤ 20 in [−𝜋, 𝜋] to get 𝑘0(𝜃𝑗 ) and do linear interpolation for the intermediate points 𝜃 ∈ ( 𝑗𝜋10 , 
(𝑗+1)𝜋
10 ), i.e. set 

𝑘0(𝜃) = (1 − 𝜆)𝑘0(𝜃𝑗 ) + 𝜆𝑘0(𝜃𝑗+1) where 𝜆 = 10
𝜋
(𝜃 − 𝑗𝜋

10 ).
To verify the quadratic convergence rate in space and linear convergence rate in time, the time step 𝜏 is always chosen as 𝜏 = 16ℎ2

except it is stated otherwise. The manifold distance [36,53]

𝑀(Γ1,Γ2) ∶= 2|Ω1 ∪Ω2|− |Ω1|− |Ω2|, (7.1)

is employed to measure the distance between two closed curves Γ1, Γ2, where Ω1, Ω2 are the regions enclosed by Γ1, Γ2 and |Ω|
represents the area of |Ω|. Suppose Γ𝑚 is the numerical approximation of Γℎ(𝑡 = 𝑡𝑚 ∶=𝑚𝜏), thus the numerical error is defined as

𝑒ℎ(𝑡)|||𝑡=𝑡𝑚 ∶=𝑀(Γ𝑚,Γ(𝑡 = 𝑡𝑚)). (7.2)

In the Newton’s iteration, the tolerance value is set to be tol = 10−12.

To test the mesh quality, the energy stability and area conservation numerically, we introduce the following indicators: the 
weighted mesh ratio

𝑅ℎ
𝛾
(𝑡) ∶=

max
1≤𝑗≤𝑁 𝛾̂(𝜃𝑗 )|𝒉𝑗 |
min

1≤𝑗≤𝑁 𝛾̂(𝜃𝑗 )|𝒉𝑗 | , (7.3)

the normalized area loss and the normalized energy for closed curves:

Δ𝐴ℎ
𝑐
(𝑡)

𝐴ℎ
𝑐
(0)

|||||𝑡=𝑡𝑚 ∶=
𝐴𝑚

𝑐
−𝐴0

𝑐

𝐴0
𝑐

,
𝑊 ℎ

𝑐
(𝑡)

𝑊 ℎ
𝑐
(0)

|||||𝑡=𝑡𝑚 ∶=
𝑊 𝑚

𝑐

𝑊 0
𝑐

, (7.4)

and for open curves:

Δ𝐴ℎ
𝑜
(𝑡) ||| ∶=

𝐴𝑚
𝑜
−𝐴0

𝑜
,

𝑊 ℎ
𝑜
(𝑡) ||| ∶=

𝑊 𝑚
𝑜

. (7.5)
16

𝐴ℎ
𝑜
(0) ||𝑡=𝑡𝑚 𝐴0

𝑜
𝑊 ℎ

𝑜
(0) ||𝑡=𝑡𝑚 𝑊 0

𝑜
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Fig. 3. Convergence rates of the SPFEM (3.32) with 𝑘(𝜃) = 𝑘0(𝜃) for: (a) anisotropy in Case I at 𝑡 = 0.5 with different 𝛽 ; and (b) anisotropy in Case II with 𝑏 = −0.8 at 
different times 𝑡 = 0.125, 0.25, 0.5. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Convergence rates of the SPFEM (3.32) for Case I at 𝑡 = 0.5 with different 𝑘(𝜃): (a) 𝛽 = 0; and (b) 𝛽 = 1∕9.

In the following numerical tests, the initial shapes are chosen as a complete and a half ellipse with major axis 4 and minor axis 1 for 
closed curves and open curves, respectively, unless stated otherwise. The exact solution Γ(𝑡) is approximated by choosing 𝑘(𝜃) = 𝑘0(𝜃)
with a small mesh size ℎ𝑒 = 2−8 and a time step 𝜏𝑒 = 2−12 in (3.32). For solid-state dewetting problems, we always choose the contact 
line mobility 𝜂 = 100.

7.1. Results for closed curves

Fig. 3 plots the convergence rates of the proposed SPFEM (3.32) for: (a) the 3-fold anisotropy 𝛾̂(𝜃) = 1 + 𝛽 cos3𝜃 with different 
anisotropic strengths 𝛽 under a fixed time 𝑡 = 0.5; (b) the ellipsoidal anisotropy 𝛾̂(𝜃) =

√
1 − 0.8cos2 𝜃 at different times. It clearly 

demonstrates that the second-order spatial convergence remains consistent regardless of anisotropies and computational times, sug-

gesting a high level of robustness in the convergence rate.

Fig. 4 displays the convergence rates of the proposed SPFEM (3.32) for Case I with different values of 𝑘(𝜃). Fig. 4 (a) corresponds 
to 𝛽 = 0, and Fig. 4 (b) corresponds to 𝛽 = 1

9 . It can be observed that varying the pre-allocated 𝑘(𝜃) does not affect the convergence 
rate.

Fig. 5 exhibits that the weighted mesh ratio 𝑅ℎ
𝛾

converges to constants as 𝑡 → +∞. This suggests an asymptotic quasi-uniform 
mesh distribution of the proposed SPFEM (3.32).

The time evolution of the normalized area loss Δ𝐴ℎ
𝑐 (𝑡)

𝐴ℎ
𝑐 (0)

, the number of the Newton’s iteration with ℎ = 2−7, 𝜏 = 2−10 are given in 

Fig. 6. And the normalized energy 𝑊
ℎ
𝑐 (𝑡)

𝑊 ℎ
𝑐 (𝑡)

with different ℎ are summarized in Fig. 7.

The observation from Fig. 6 – Fig. 7 reveals that:

1. The normalized area loss is at 10−16, aligns closely with the order of the round-off error (cf. Fig. 6). This observation affirms the 
practical preservation of area in simulations.

2. The numbers of the Newton’s iteration are initially 3 or 4, and quickly descend to 2 (cf. Fig. 6). This discovery indicates that the 
proposed SPFEM (3.32) can be solved with high efficiency, requiring only a few iterations.

3. The normalized energy is monotonically decreasing when 𝛾̂(𝜃) satisfies the energy stable conditions (3.36) in Definition 3.1 (cf. 
17

Fig. 7). Results in Fig. 7 (a) shows that the proposed SPFEM (3.32) still preserves good energy stability properties when 𝛽 takes 
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Fig. 5. Weighted mesh ratio of the SPFEM (3.32) with 𝑘(𝜃) = 𝑘0(𝜃) for: (a) anisotropy in Case I with 𝛽 = 1
9
; and (b) anisotropy in Case II with 𝑏 = −0.8.

Fig. 6. Normalized area loss (blue dashed line) and iteration number (red line) of the SPFEM (3.32) with 𝑘(𝜃) = 𝑘0(𝜃) and ℎ = 2−7, 𝜏 = 2−10 for: (a) anisotropy in Case 
I with 𝛽 = 1

2
; and (b) anisotropy in Case II with 𝑏 = −0.8.

Fig. 7. Normalized energy of the SPFEM (3.32) with 𝑘(𝜃) = 𝑘0(𝜃) for: (a) anisotropy in Case I with 𝛽 = 1
2
; and (b) anisotropy in Case II with 𝑏 = −0.8.

its maximum value of 1∕2 in Remark 3.4. And results in Fig. 7 (b) indicate that, unlike the ES-PFEM in [36], the SPFEM remains 
unconditionally energy stable when 𝑏 < −1∕2 as stated in Remark 3.5.

7.2. Results for open curves in solid-state dewetting

Fig. 8 plots the computation errors of the proposed SPFEM (6.6) for: (a) the 3-fold anisotropy 𝛾̂(𝜃) = 1 + 𝛽 cos3𝜃 with different 
anisotropic strengths 𝛽 under a fixed time 𝑡 = 0.5; (b) the ellipsoidal anisotropy 𝛾̂(𝜃) =

√
1 + 2cos2 𝜃 at different times. The results 
18

verify the quadratic convergence rate for the proposed SPFEM (6.6).
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Fig. 8. Convergence rates of the SPFEM (3.32) with 𝑘(𝜃) = 𝑘0(𝜃) and 𝜎 = −
√
2
2

for: (a) anisotropy in Case I at 𝑡 = 0.5 with different 𝛽 ; and (b) anisotropy in Case II 
with 𝑏 = 2 at different times 𝑡 = 0.125, 0.25, 0.5.

Fig. 9. Weighted mesh ratio of the SPFEM (3.32) with 𝑘(𝜃) = 𝑘0(𝜃) and 𝜎 = −
√
2
2

for: (a) anisotropy in Case I with 𝛽 = 1
9
; (b) anisotropy in Case II with 𝑏 = 2.

Fig. 10. Normalized area loss (blue dashed line) and iteration number (red line) of the SPFEM (3.32) with 𝑘(𝜃) = 𝑘0(𝜃), 𝜎 = −
√
2
2

and ℎ = 2−7, 𝜏 = 2−10 for: (a) 
anisotropy in Case I with 𝛽 = 1

9
; and (b) anisotropy in Case II with 𝑏 = 2.

In Fig. 9, the weighted mesh ratios 𝑅ℎ
𝛾

tend to constants as 𝑡 → +∞, showing that the SPFEM (6.6) still possesses the asymptotic 
quasi-uniform distribution.

Time evolutions of the normalized area loss Δ𝐴ℎ
𝑜 (𝑡)

𝐴ℎ
𝑜 (0)

, the number of the Newton’s iteration with ℎ = 2−7, 𝜏 = 2−10 are presented in 

Fig. 10. And the normalized energy 𝑊
ℎ
𝑜 (𝑡)

𝑊 ℎ
𝑜 (𝑡)

with different ℎ are illustrated in Fig. 11.
19

It can be observed from Fig. 7 – Fig. 10 that:
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Fig. 11. Normalized energy of the SPFEM (3.32) with 𝑘(𝜃) = 𝑘0(𝜃) and 𝜎 = −
√
2
2

for: (a) anisotropy in Case I with 𝛽 = 1
9
; and (b) anisotropy in Case II with 𝑏 = 2.

Fig. 12. Morphological evolutions of an ellipse with major axis 4 and minor axis 1 under anisotropic surface diffusion with different surface energies: (a) anisotropy 
in Case I with 𝛽 = 1

2
; (b) anisotropy in Case II with 𝑏 = −0.8; (c) 𝛾̂(𝜃) = 1 + 1

16
cos4𝜃; (d) 𝛾̂(𝜃) =

√(
5
2
+ 3

2
sgn(𝑛1)

)
𝑛21 + 𝑛22 with 𝒏 = (𝑛1, 𝑛2)𝑇 = (− sin𝜃, cos𝜃)𝑇 . The 

red and blue lines represent the initial shape and the numerical equilibrium, respectively; and the black dashed lines represent the intermediate curves. The mesh size 
and the time step are taken as ℎ = 2−7, 𝜏 = 2−10 .

1. The normalized area loss is about 10−16 at the same order of the round-off error (cf. Fig. 10), verifying that the area is conserved 
up to the machine precision.

2. The numbers of the Newton’s iteration are initially 3 and finally 2 (cf. Fig. 10). This finding suggests that, despite the fully-implicit 
20

nature of the proposed SPFEM (6.6), it can be solved very efficiently.
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Fig. 13. Morphological evolutions of a four-fold star shape curve and a rotated ellipse under anisotropic surface diffusion with different surface energies: (a) anisotropy 
in Case I with 𝛽 = 1

2
; (b) anisotropy in Case II with 𝑏 = −0.8; (c) 𝛾̂(𝜃) = 1 + 1

16
cos4𝜃; (d) 𝛾̂(𝜃) =

√(
5
2
+ 3

2
sgn(𝑛1)

)
𝑛21 + 𝑛22 with 𝒏 = (𝑛1, 𝑛2)𝑇 = (− sin𝜃, cos𝜃)𝑇 . The 

red and blue lines represent the initial shape and the numerical equilibrium, respectively; and the black dashed lines represent the intermediate curves. The mesh size 
and the time step are taken as ℎ = 2−7, 𝜏 = 2−10 .

3. The normalized energy is monotonically decreasing when 𝛾̂(𝜃) satisfying (3.36) (cf. Fig. 11). In contrast to the ES-PFEM in [36], 
the proposed SPFEM (6.6) still guarantees the energy dissipation when 𝛽 <

1
10 in Case I and 𝑏 > 1 in Case II, as asserted by 

Remark 3.4 and Remark 3.5.

7.3. Application for morphological evolutions

Finally we apply the proposed SPFEMs (3.32) and (6.6) to simulate the morphological evolutions under the anisotropic surface 
diffusion. Results for both closed curves and open curves in solid-state dewetting problems are provided.

The morphological evolutions from the initial shapes to their numerical equilibriums are presented in Fig. 12 – Fig. 14. For closed 
curve cases, the initial shape is an ellipse with major axis 4 and minor axis 1, while for open curve cases, it is an open 4 ×1 rectangle.

Fig. 12 plots the morphological evolutions of an ellipse with major axis 4 and minor axis 1 under anisotropic surface diffusion 
with four different surface energies: (a) anisotropy in Case I with 𝛽 = 1

2 , which attends the maximum value in Remark 3.4; (b) 

anisotropy in Case II with 𝑏 = −0.8; (c) the 4-fold anisotropy 𝛾̂(𝜃) = 1 + 1
16 cos 4𝜃 [4]; and (d) 𝛾̂(𝜃) =

√(
5
2 +

3
2 sgn(𝑛1)

)
𝑛21 + 𝑛22 with 

𝒏 = (𝑛1, 𝑛2)𝑇 = (− sin𝜃, cos𝜃)𝑇 [20].

Results in Fig. 12 (b) and Fig. 12 (c) show that, compared to the ES-PFEM in [36], the proposed SPFEM (3.32) demonstrates a 
better performance over a broader range of parameters during evolutions. Fig. 12 (d) indicates that the SPFEM (3.32) also works well 
for a globally 𝐶1 and piecewise 𝐶2 anisotropy.

And Fig. 13 illustrates the morphological evolutions under anisotropic surface diffusion with different surface energies for a 
21

four-fold star shape curve
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Fig. 14. Morphological evolutions of an open 4 × 1 rectangle under anisotropic surface diffusion with different surface energies: (a) anisotropy in Case I with 𝛽 = 1
9
; 

(b) anisotropy in Case II with 𝑏 = 2; (c) 𝛾̂(𝜃) = 1 + 1
16

cos4𝜃; (d) 𝛾̂(𝜃) =
√(

5
2
+ 3

2
sgn(𝑛1)

)
𝑛21 + 𝑛22 with 𝒏 = (𝑛1, 𝑛2)𝑇 = (− sin𝜃, cos𝜃)𝑇 . The red and blue lines represent 

the initial shape and the numerical equilibrium, respectively; and the black dashed lines represent the intermediate curves. The parameters are chosen as 𝜎 = −
√
2
2
, ℎ =

2−7, 𝜏 = 2−10 .{
𝑥 = (1 + 0.5cos4𝜃) cos𝜃,
𝑦 = (1 + 0.5cos4𝜃) sin𝜃, 𝜃 ∈ 2𝜋𝕋 , (7.6)

and an ellipse (with major axis 4 and minor axis 1) rotated counterclockwise by 𝜋

10 .

In Fig. 14, we display the morphological evolutions from an open 4 ×1 rectangular curve to their equilibriums shapes with different 
surface energies: (a) anisotropy in Case I with 𝛽 = 1

9 ; (b) anisotropy in Case II with 𝑏 = 2; (c) the 4-fold anisotropy 𝛾̂(𝜃) = 1 + 1
16 cos 4𝜃; 

(d) 𝛾̂(𝜃) =
√(

5
2 +

3
2 sgn(𝑛1)

)
𝑛21 + 𝑛22 with 𝒏 = (𝑛1, 𝑛2)𝑇 = (− sin𝜃, cos𝜃)𝑇 .

Similar to the closed curve cases, the SPFEM (6.6) extends the choices in surface energies for simulating solid-state dewetting (cf. 
Fig. 14 (a) – Fig. 14 (c)). And Fig. 14 (d) illustrates that our method also performs effectively for 𝛾̂(𝜃) with lower regularity.

8. Conclusions

We propose a structure-preserving stabilized parametric finite element method (SPFEM) for the anisotropic surface diffusion. This 
method is subject to mild conditions on 𝛾̂(𝜃), and works effectively for closed curves and open curves with contact line migration in 
solid-state dewetting. By introducing a new stabilized surface energy matrix, we obtain a conservative form and its weak formulation 
for anisotropic surface diffusion. Based on this weak formulation, a novel SPFEM is proposed by utilizing the PFEM for spatial 
discretization and the implicit-explicit Euler method for temporal discretization. To analyze the unconditional energy stability, we 
extend the framework proposed by Bao and Li to the 𝛾̂(𝜃) formulation. This approach starts by defining the minimal stabilizing 
function, proving its existence, results in a local energy estimate, and subsequently establishes unconditional energy stability. Due 
22

to the very mild requirements on the surface energy 𝛾̂(𝜃), the methods are able to simulate over a broader range of anisotropies for 
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both closed curves and open curves. Moreover, the SPFEMs are applicable for the globally 𝐶1 and piecewise 𝐶2 anisotropy as well, 
which is a capability not possessed by other PFEMs.
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